基于特征选择性重构的海杂波抑制

Liwu Wen, Chao Zhong, Xuejun Huang, Jinshan Ding
{"title":"基于特征选择性重构的海杂波抑制","authors":"Liwu Wen, Chao Zhong, Xuejun Huang, Jinshan Ding","doi":"10.1109/APSAR46974.2019.9048548","DOIUrl":null,"url":null,"abstract":"This paper presents a sea clutter suppression (SCS) method for single-channel maritime radar based on a deep Convolutional Neural Network (SCS-CNN), which consists of an encoder and a decoder. First, the encoder is used to extract depth features of the original Range-Doppler spectrum obtained from sub-aperture echoes. Second, the decoder is used to selectively reconstruct the desired Range-Doppler spectrum which only contains the moving targets. Finally, the results of moving target detection are obtained by using the cell average constant false alarm rate detector. This method effectively suppresses the sea clutter and correctly indicates the moving targets under different Signal-to-Clutter-plus-Noise Ratios with low false alarm rate. Particularly, it has good feature extraction and reconstruction abilities for the moving targets whose Doppler is inside the mainlobe clutter.","PeriodicalId":377019,"journal":{"name":"2019 6th Asia-Pacific Conference on Synthetic Aperture Radar (APSAR)","volume":"35 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Sea Clutter Suppression Based on Selective Reconstruction of Features\",\"authors\":\"Liwu Wen, Chao Zhong, Xuejun Huang, Jinshan Ding\",\"doi\":\"10.1109/APSAR46974.2019.9048548\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper presents a sea clutter suppression (SCS) method for single-channel maritime radar based on a deep Convolutional Neural Network (SCS-CNN), which consists of an encoder and a decoder. First, the encoder is used to extract depth features of the original Range-Doppler spectrum obtained from sub-aperture echoes. Second, the decoder is used to selectively reconstruct the desired Range-Doppler spectrum which only contains the moving targets. Finally, the results of moving target detection are obtained by using the cell average constant false alarm rate detector. This method effectively suppresses the sea clutter and correctly indicates the moving targets under different Signal-to-Clutter-plus-Noise Ratios with low false alarm rate. Particularly, it has good feature extraction and reconstruction abilities for the moving targets whose Doppler is inside the mainlobe clutter.\",\"PeriodicalId\":377019,\"journal\":{\"name\":\"2019 6th Asia-Pacific Conference on Synthetic Aperture Radar (APSAR)\",\"volume\":\"35 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2019 6th Asia-Pacific Conference on Synthetic Aperture Radar (APSAR)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/APSAR46974.2019.9048548\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 6th Asia-Pacific Conference on Synthetic Aperture Radar (APSAR)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/APSAR46974.2019.9048548","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

摘要

提出了一种基于深度卷积神经网络(SCS- cnn)的单通道海上雷达杂波抑制方法,该方法由编码器和解码器组成。首先,利用编码器提取子孔径回波原始距离-多普勒频谱的深度特征;其次,利用解码器选择性地重建只包含运动目标的所需距离-多普勒频谱。最后,利用单元平均恒虚警率检测器对运动目标进行检测。该方法有效地抑制了海杂波,在不同信噪比下准确显示运动目标,虚警率低。特别是对多普勒位于主瓣杂波内的运动目标具有较好的特征提取和重建能力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Sea Clutter Suppression Based on Selective Reconstruction of Features
This paper presents a sea clutter suppression (SCS) method for single-channel maritime radar based on a deep Convolutional Neural Network (SCS-CNN), which consists of an encoder and a decoder. First, the encoder is used to extract depth features of the original Range-Doppler spectrum obtained from sub-aperture echoes. Second, the decoder is used to selectively reconstruct the desired Range-Doppler spectrum which only contains the moving targets. Finally, the results of moving target detection are obtained by using the cell average constant false alarm rate detector. This method effectively suppresses the sea clutter and correctly indicates the moving targets under different Signal-to-Clutter-plus-Noise Ratios with low false alarm rate. Particularly, it has good feature extraction and reconstruction abilities for the moving targets whose Doppler is inside the mainlobe clutter.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信