高维数据的交互式可视化方法,基于颜色的降维模型

D. Peña-Unigarro, J. A. Salazar-Castro, Diego Hernán Peluffo-Ordóñez, P. Rosero-Montalvo, O. R. Oña-Rocha, Andres A. Isaza, J. C. Alvarado-Pérez, Roberto Therón
{"title":"高维数据的交互式可视化方法,基于颜色的降维模型","authors":"D. Peña-Unigarro, J. A. Salazar-Castro, Diego Hernán Peluffo-Ordóñez, P. Rosero-Montalvo, O. R. Oña-Rocha, Andres A. Isaza, J. C. Alvarado-Pérez, Roberto Therón","doi":"10.1109/STSIVA.2016.7743318","DOIUrl":null,"url":null,"abstract":"Nowadays, a consequence of data overload is that world's technology capacity to collect, communicate, and store large volumes of data is increasing faster than human analysis skills. Such an issue has motivated the development of graphic ways to visually represent and analyze high-dimensional data. Particularly, in this work, we propose a graphical interface that allow the combination of dimensionality reduction (DR) methods using a chromatic model to make data visualization more intelligible for humans. This interface is designed for an easy and interactive use, so that input parameters are given by the user via the selection of RGB values inside a given surface. Proposed interface enables (even non-expert) users to intuitively either select a concrete DR method or carry out a mixture of methods. Experimental results proves the usability of our interface making the selection or configuration of a DR-based visualization an intuitive and interactive task for the user.","PeriodicalId":373420,"journal":{"name":"2016 XXI Symposium on Signal Processing, Images and Artificial Vision (STSIVA)","volume":"106 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":"{\"title\":\"Interactive visualization methodology of high-dimensional data with a color-based model for dimensionality reduction\",\"authors\":\"D. Peña-Unigarro, J. A. Salazar-Castro, Diego Hernán Peluffo-Ordóñez, P. Rosero-Montalvo, O. R. Oña-Rocha, Andres A. Isaza, J. C. Alvarado-Pérez, Roberto Therón\",\"doi\":\"10.1109/STSIVA.2016.7743318\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Nowadays, a consequence of data overload is that world's technology capacity to collect, communicate, and store large volumes of data is increasing faster than human analysis skills. Such an issue has motivated the development of graphic ways to visually represent and analyze high-dimensional data. Particularly, in this work, we propose a graphical interface that allow the combination of dimensionality reduction (DR) methods using a chromatic model to make data visualization more intelligible for humans. This interface is designed for an easy and interactive use, so that input parameters are given by the user via the selection of RGB values inside a given surface. Proposed interface enables (even non-expert) users to intuitively either select a concrete DR method or carry out a mixture of methods. Experimental results proves the usability of our interface making the selection or configuration of a DR-based visualization an intuitive and interactive task for the user.\",\"PeriodicalId\":373420,\"journal\":{\"name\":\"2016 XXI Symposium on Signal Processing, Images and Artificial Vision (STSIVA)\",\"volume\":\"106 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-08-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"6\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2016 XXI Symposium on Signal Processing, Images and Artificial Vision (STSIVA)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/STSIVA.2016.7743318\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 XXI Symposium on Signal Processing, Images and Artificial Vision (STSIVA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/STSIVA.2016.7743318","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

摘要

如今,数据过载的一个后果是,世界收集、交流和存储大量数据的技术能力的增长速度超过了人类分析技能的增长速度。这样的问题推动了图形方法的发展,以直观地表示和分析高维数据。特别是,在这项工作中,我们提出了一个图形界面,允许使用颜色模型的降维(DR)方法的组合,使数据可视化对人类更容易理解。这个界面是为了一个简单的和交互式的使用而设计的,所以输入参数是由用户通过选择给定表面内的RGB值来给出的。所提出的接口使(即使是非专家)用户能够直观地选择具体的DR方法或执行混合方法。实验结果证明了我们的界面的可用性,使得基于dr的可视化的选择或配置对用户来说是一个直观和交互式的任务。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Interactive visualization methodology of high-dimensional data with a color-based model for dimensionality reduction
Nowadays, a consequence of data overload is that world's technology capacity to collect, communicate, and store large volumes of data is increasing faster than human analysis skills. Such an issue has motivated the development of graphic ways to visually represent and analyze high-dimensional data. Particularly, in this work, we propose a graphical interface that allow the combination of dimensionality reduction (DR) methods using a chromatic model to make data visualization more intelligible for humans. This interface is designed for an easy and interactive use, so that input parameters are given by the user via the selection of RGB values inside a given surface. Proposed interface enables (even non-expert) users to intuitively either select a concrete DR method or carry out a mixture of methods. Experimental results proves the usability of our interface making the selection or configuration of a DR-based visualization an intuitive and interactive task for the user.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信