{"title":"实用指南电路选择便携式微处理器为基础,低组件计数,近直流电流表定制仪器","authors":"Paul E. Stevenson, J. Christen","doi":"10.1109/LSC.2018.8572257","DOIUrl":null,"url":null,"abstract":"The growing market for wearable, portable, and IoT devices has generated a need for a class of circuits to meet the requirements for these applications. In this work we specifically investigate ammeters. The design space requires low component count circuits for measuring slowly varying currents using low-cost microcontrollers. Simple architectures, feasible for an electronics novice are described and compared experimentally. The use of the time domain to improve error and range of measurement is considered. This guide provides an individual without extensive electronics design experience with a simple selection guide for choosing the appropriate architecture for their specific application.","PeriodicalId":254835,"journal":{"name":"2018 IEEE Life Sciences Conference (LSC)","volume":"28 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A Practical Guide to Circuit Selection for Portable Microprocessor-Based, Low Component Count, Near-DC Ammeter for Custom Instruments\",\"authors\":\"Paul E. Stevenson, J. Christen\",\"doi\":\"10.1109/LSC.2018.8572257\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The growing market for wearable, portable, and IoT devices has generated a need for a class of circuits to meet the requirements for these applications. In this work we specifically investigate ammeters. The design space requires low component count circuits for measuring slowly varying currents using low-cost microcontrollers. Simple architectures, feasible for an electronics novice are described and compared experimentally. The use of the time domain to improve error and range of measurement is considered. This guide provides an individual without extensive electronics design experience with a simple selection guide for choosing the appropriate architecture for their specific application.\",\"PeriodicalId\":254835,\"journal\":{\"name\":\"2018 IEEE Life Sciences Conference (LSC)\",\"volume\":\"28 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2018 IEEE Life Sciences Conference (LSC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/LSC.2018.8572257\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 IEEE Life Sciences Conference (LSC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/LSC.2018.8572257","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
A Practical Guide to Circuit Selection for Portable Microprocessor-Based, Low Component Count, Near-DC Ammeter for Custom Instruments
The growing market for wearable, portable, and IoT devices has generated a need for a class of circuits to meet the requirements for these applications. In this work we specifically investigate ammeters. The design space requires low component count circuits for measuring slowly varying currents using low-cost microcontrollers. Simple architectures, feasible for an electronics novice are described and compared experimentally. The use of the time domain to improve error and range of measurement is considered. This guide provides an individual without extensive electronics design experience with a simple selection guide for choosing the appropriate architecture for their specific application.