{"title":"一种微功率倾斜处理电路","authors":"T. Constandinou, J. Georgiou","doi":"10.1109/BIOCAS.2008.4696908","DOIUrl":null,"url":null,"abstract":"This paper describes a novel analogue circuit for extracting the tilt angle from the output of a standard MEMS accelerometer. The circuit uses the accelerometer signal together with the gravitational acceleration vector to generate the tilt signal. Using a current-mode representation with devices operated in subthreshold, the appropriate trigonometric function has been realised to compute tilt. Furthermore, implementing a long-time constant filter to extract the mean tilt level provides adaptation to the static tilt level. Specifically, this circuit has been designed as part of an implantable vestibular prosthesis to provide inclination signals for bypassing dysfunctional otolith end-organs. The hardware has been implemented in AMS 0.35 mum 2P4M CMOS technology.","PeriodicalId":415200,"journal":{"name":"2008 IEEE Biomedical Circuits and Systems Conference","volume":"25 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2008-11-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"A micropower tilt processing circuit\",\"authors\":\"T. Constandinou, J. Georgiou\",\"doi\":\"10.1109/BIOCAS.2008.4696908\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper describes a novel analogue circuit for extracting the tilt angle from the output of a standard MEMS accelerometer. The circuit uses the accelerometer signal together with the gravitational acceleration vector to generate the tilt signal. Using a current-mode representation with devices operated in subthreshold, the appropriate trigonometric function has been realised to compute tilt. Furthermore, implementing a long-time constant filter to extract the mean tilt level provides adaptation to the static tilt level. Specifically, this circuit has been designed as part of an implantable vestibular prosthesis to provide inclination signals for bypassing dysfunctional otolith end-organs. The hardware has been implemented in AMS 0.35 mum 2P4M CMOS technology.\",\"PeriodicalId\":415200,\"journal\":{\"name\":\"2008 IEEE Biomedical Circuits and Systems Conference\",\"volume\":\"25 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2008-11-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2008 IEEE Biomedical Circuits and Systems Conference\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/BIOCAS.2008.4696908\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2008 IEEE Biomedical Circuits and Systems Conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/BIOCAS.2008.4696908","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5
摘要
本文描述了一种从标准MEMS加速度计输出中提取倾斜角度的新型模拟电路。该电路利用加速度计信号与重力加速度矢量一起产生倾斜信号。使用电流模式表示与设备在亚阈值操作,适当的三角函数已经实现计算倾斜。此外,实现一个长时间的恒定滤波器来提取平均倾斜水平提供了对静态倾斜水平的适应。具体来说,该电路被设计为植入式前庭假体的一部分,为绕过功能失调的耳石末端器官提供倾斜信号。硬件采用AMS 0.35 μ m 2P4M CMOS技术实现。
This paper describes a novel analogue circuit for extracting the tilt angle from the output of a standard MEMS accelerometer. The circuit uses the accelerometer signal together with the gravitational acceleration vector to generate the tilt signal. Using a current-mode representation with devices operated in subthreshold, the appropriate trigonometric function has been realised to compute tilt. Furthermore, implementing a long-time constant filter to extract the mean tilt level provides adaptation to the static tilt level. Specifically, this circuit has been designed as part of an implantable vestibular prosthesis to provide inclination signals for bypassing dysfunctional otolith end-organs. The hardware has been implemented in AMS 0.35 mum 2P4M CMOS technology.