发射光谱学中估计波数有序光谱的并行最大似然反演

H. El-Sayed, M. Salit, J. Travis, J. Devaney, W. George
{"title":"发射光谱学中估计波数有序光谱的并行最大似然反演","authors":"H. El-Sayed, M. Salit, J. Travis, J. Devaney, W. George","doi":"10.1109/IPDPS.2000.845966","DOIUrl":null,"url":null,"abstract":"We introduce a parallelization of the maximum likelihood cosine transform. This transform consists of a computationally intensive iterative fitting process, but is readily decomposed for parallel processing. The parallel implementation is not only scalable, but has also brought the execution time of this previously intractable problem to feasible levels using contemporary and cost-efficient high-performance computers, including an SGI Origin 2000, an SGI Onyx, and a cluster of Intel-based PCs.","PeriodicalId":206541,"journal":{"name":"Proceedings 14th International Parallel and Distributed Processing Symposium. IPDPS 2000","volume":"32 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2000-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Parallel maximum-likelihood inversion for estimating wavenumber-ordered spectra in emission spectroscopy\",\"authors\":\"H. El-Sayed, M. Salit, J. Travis, J. Devaney, W. George\",\"doi\":\"10.1109/IPDPS.2000.845966\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We introduce a parallelization of the maximum likelihood cosine transform. This transform consists of a computationally intensive iterative fitting process, but is readily decomposed for parallel processing. The parallel implementation is not only scalable, but has also brought the execution time of this previously intractable problem to feasible levels using contemporary and cost-efficient high-performance computers, including an SGI Origin 2000, an SGI Onyx, and a cluster of Intel-based PCs.\",\"PeriodicalId\":206541,\"journal\":{\"name\":\"Proceedings 14th International Parallel and Distributed Processing Symposium. IPDPS 2000\",\"volume\":\"32 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2000-05-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings 14th International Parallel and Distributed Processing Symposium. IPDPS 2000\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IPDPS.2000.845966\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings 14th International Parallel and Distributed Processing Symposium. IPDPS 2000","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IPDPS.2000.845966","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

我们引入了最大似然余弦变换的并行化。该变换包含一个计算量大的迭代拟合过程,但易于分解以进行并行处理。并行实现不仅具有可伸缩性,而且还将这个以前难以解决的问题的执行时间降低到使用现代和经济高效的高性能计算机(包括SGI Origin 2000、SGI Onyx和基于英特尔的pc集群)的可行水平。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Parallel maximum-likelihood inversion for estimating wavenumber-ordered spectra in emission spectroscopy
We introduce a parallelization of the maximum likelihood cosine transform. This transform consists of a computationally intensive iterative fitting process, but is readily decomposed for parallel processing. The parallel implementation is not only scalable, but has also brought the execution time of this previously intractable problem to feasible levels using contemporary and cost-efficient high-performance computers, including an SGI Origin 2000, an SGI Onyx, and a cluster of Intel-based PCs.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信