基于机械和压电弯曲系统的镜面变形策略优化

Takato Inoue, Yuka Nishioka, S. Matsuyama, J. Sonoyama, K. Akiyama, H. Nakamori, Y. Sano, Y. Kohmura, M. Yabashi, T. Ishikawa, L. Assoufid, K. Yamauchi
{"title":"基于机械和压电弯曲系统的镜面变形策略优化","authors":"Takato Inoue, Yuka Nishioka, S. Matsuyama, J. Sonoyama, K. Akiyama, H. Nakamori, Y. Sano, Y. Kohmura, M. Yabashi, T. Ishikawa, L. Assoufid, K. Yamauchi","doi":"10.1117/12.2594944","DOIUrl":null,"url":null,"abstract":"We have developed an X-ray zoom condenser optical system using deformable mirrors that can adjust the beam size by deformation of their shape. The shapes of deformable mirrors are changed by a combination of mechanical and piezoelectric bending. Large deformations up to third order polynomials are achieved by mechanical bending. More precise shapes are achieved by piezoelectric bimorph mirror. However, because both ends of the mirror are mechanically clamped, capability of deformation by piezoelectric bending is lower than that of free-standing piezoelectric bimorph mirrors. So, we propose a bending method that tunes the mechanical bending conditions to intentionally leave the optimized shape error to be easily compensated by the piezoelectric bending process.","PeriodicalId":114930,"journal":{"name":"Advances in X-Ray/EUV Optics and Components XVI","volume":"2 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Optimization of mirror deformation strategy using mechanical and piezoelectric bending system\",\"authors\":\"Takato Inoue, Yuka Nishioka, S. Matsuyama, J. Sonoyama, K. Akiyama, H. Nakamori, Y. Sano, Y. Kohmura, M. Yabashi, T. Ishikawa, L. Assoufid, K. Yamauchi\",\"doi\":\"10.1117/12.2594944\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We have developed an X-ray zoom condenser optical system using deformable mirrors that can adjust the beam size by deformation of their shape. The shapes of deformable mirrors are changed by a combination of mechanical and piezoelectric bending. Large deformations up to third order polynomials are achieved by mechanical bending. More precise shapes are achieved by piezoelectric bimorph mirror. However, because both ends of the mirror are mechanically clamped, capability of deformation by piezoelectric bending is lower than that of free-standing piezoelectric bimorph mirrors. So, we propose a bending method that tunes the mechanical bending conditions to intentionally leave the optimized shape error to be easily compensated by the piezoelectric bending process.\",\"PeriodicalId\":114930,\"journal\":{\"name\":\"Advances in X-Ray/EUV Optics and Components XVI\",\"volume\":\"2 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-08-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advances in X-Ray/EUV Optics and Components XVI\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1117/12.2594944\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in X-Ray/EUV Optics and Components XVI","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1117/12.2594944","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

我们开发了一种x射线变焦聚光光学系统,该系统使用可变形反射镜,可以通过其形状的变形来调节光束的大小。可变形镜的形状是通过机械弯曲和压电弯曲的结合来改变的。通过机械弯曲可以实现高达三阶多项式的大变形。压电双晶片镜可以实现更精确的形状。然而,由于双晶片镜的两端是机械夹紧的,因此压电弯曲变形能力低于独立式压电双晶片镜。因此,我们提出了一种弯曲方法,通过调整机械弯曲条件,使优化后的形状误差易于通过压电弯曲工艺补偿。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Optimization of mirror deformation strategy using mechanical and piezoelectric bending system
We have developed an X-ray zoom condenser optical system using deformable mirrors that can adjust the beam size by deformation of their shape. The shapes of deformable mirrors are changed by a combination of mechanical and piezoelectric bending. Large deformations up to third order polynomials are achieved by mechanical bending. More precise shapes are achieved by piezoelectric bimorph mirror. However, because both ends of the mirror are mechanically clamped, capability of deformation by piezoelectric bending is lower than that of free-standing piezoelectric bimorph mirrors. So, we propose a bending method that tunes the mechanical bending conditions to intentionally leave the optimized shape error to be easily compensated by the piezoelectric bending process.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信