基于两阶段动态划分的空间不确定性轨迹数据集挖掘

Wang Liang, Mei Wang, He Hucheng
{"title":"基于两阶段动态划分的空间不确定性轨迹数据集挖掘","authors":"Wang Liang, Mei Wang, He Hucheng","doi":"10.12733/JICS20105632","DOIUrl":null,"url":null,"abstract":"Due to the measurement precision, transmission delay and so on, we could only obtain uncertainty position information of moving objects. Spatial uncertainty trajectory data is uncertain in location of mobile objects. It is leading to the challenge of modeling uncertainty trajectory data and mining usable knowledge about movement pattern. In this paper, we propose a two-stages dynamic division method to dealing with the spatial uncertainty trajectory. The approach presents the notions of adjacent boundary cells and shared cells, and merges these cells into basic cells through distance and density membership degree. A comprehensive performance study on synthetic datasets shows that the proposed method in both effectiveness and scalability.","PeriodicalId":213716,"journal":{"name":"The Journal of Information and Computational Science","volume":"112 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-03-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Spatial Uncertainty Trajectory Dataset Mining Based on Two-stages Dynamic Division ⋆\",\"authors\":\"Wang Liang, Mei Wang, He Hucheng\",\"doi\":\"10.12733/JICS20105632\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Due to the measurement precision, transmission delay and so on, we could only obtain uncertainty position information of moving objects. Spatial uncertainty trajectory data is uncertain in location of mobile objects. It is leading to the challenge of modeling uncertainty trajectory data and mining usable knowledge about movement pattern. In this paper, we propose a two-stages dynamic division method to dealing with the spatial uncertainty trajectory. The approach presents the notions of adjacent boundary cells and shared cells, and merges these cells into basic cells through distance and density membership degree. A comprehensive performance study on synthetic datasets shows that the proposed method in both effectiveness and scalability.\",\"PeriodicalId\":213716,\"journal\":{\"name\":\"The Journal of Information and Computational Science\",\"volume\":\"112 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2015-03-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"The Journal of Information and Computational Science\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.12733/JICS20105632\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"The Journal of Information and Computational Science","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.12733/JICS20105632","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

由于测量精度、传输延迟等原因,我们只能获得运动物体的不确定位置信息。空间不确定性轨迹数据是指移动目标位置的不确定性。这给不确定性轨迹数据建模和挖掘运动模式可用知识带来了挑战。本文提出了一种两阶段动态划分方法来处理空间不确定性轨迹。该方法提出了相邻边界细胞和共享细胞的概念,并通过距离和密度隶属度将这些细胞合并为基本细胞。对综合数据集的性能研究表明,该方法具有良好的有效性和可扩展性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Spatial Uncertainty Trajectory Dataset Mining Based on Two-stages Dynamic Division ⋆
Due to the measurement precision, transmission delay and so on, we could only obtain uncertainty position information of moving objects. Spatial uncertainty trajectory data is uncertain in location of mobile objects. It is leading to the challenge of modeling uncertainty trajectory data and mining usable knowledge about movement pattern. In this paper, we propose a two-stages dynamic division method to dealing with the spatial uncertainty trajectory. The approach presents the notions of adjacent boundary cells and shared cells, and merges these cells into basic cells through distance and density membership degree. A comprehensive performance study on synthetic datasets shows that the proposed method in both effectiveness and scalability.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信