{"title":"论紧密球形设计的分类","authors":"P. Boyvalenkov","doi":"10.1109/ISIT.1994.394882","DOIUrl":null,"url":null,"abstract":"We find the distance distributions (of a spherical code) with respect to every point for the tight spherical 4-, 5-, and 7-designs. As an immediate corollary we prove the nonexistence of an infinite class of tight spherical 4-designs. This implies the nonexistence of a corresponding infinite class of tight spherical 5-designs.<<ETX>>","PeriodicalId":331390,"journal":{"name":"Proceedings of 1994 IEEE International Symposium on Information Theory","volume":"36 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1994-06-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"On the classification of the tight spherical designs\",\"authors\":\"P. Boyvalenkov\",\"doi\":\"10.1109/ISIT.1994.394882\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We find the distance distributions (of a spherical code) with respect to every point for the tight spherical 4-, 5-, and 7-designs. As an immediate corollary we prove the nonexistence of an infinite class of tight spherical 4-designs. This implies the nonexistence of a corresponding infinite class of tight spherical 5-designs.<<ETX>>\",\"PeriodicalId\":331390,\"journal\":{\"name\":\"Proceedings of 1994 IEEE International Symposium on Information Theory\",\"volume\":\"36 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1994-06-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of 1994 IEEE International Symposium on Information Theory\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ISIT.1994.394882\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of 1994 IEEE International Symposium on Information Theory","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISIT.1994.394882","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
On the classification of the tight spherical designs
We find the distance distributions (of a spherical code) with respect to every point for the tight spherical 4-, 5-, and 7-designs. As an immediate corollary we prove the nonexistence of an infinite class of tight spherical 4-designs. This implies the nonexistence of a corresponding infinite class of tight spherical 5-designs.<>