近岸过程在复杂水深测量中的模式预测

J. Kaihatu, K. Edwards, W. O'Reilly
{"title":"近岸过程在复杂水深测量中的模式预测","authors":"J. Kaihatu, K. Edwards, W. O'Reilly","doi":"10.1109/OCEANS.2002.1192052","DOIUrl":null,"url":null,"abstract":"Waves undergo significant transformation over complex bathymetry, and the resulting nearshore wave conditions can be sensitive to small changes in the offshore wave forcing. A potential consequence of this transformation sensitivity is large uncertainties in modeled nearshore waves owing to the amplification of the error in the deep water spectra used as initial conditions. In preparation for the upcoming Nearshore Canyon Wave Experiment in La Jolla, CA, a boundary condition sensitivity analysis was performed over the region's submarine canyon bathymetry using the SWAN wave model. The sensitivity analysis included varying the offshore spectrum discretization (frequency and directional bandwidths), the peak period and direction of the spectra, and the frequency and directional spreads. In each case, the magnitude of the spectral variations was governed by expected uncertainties when initializing a nearshore model with a) typical buoy data for the area, and b) global WAM model hindcasts or forecasts. In addition, data from the Torrey Pines Outer Buoy (located 12 km offshore) from the first week of November 2001 were used to initialize the model, and the maximum change seen in the domain over the course of the week were compared to those derived from the sensitivity analysis. The nearshore locations that showed the largest change in wave height over time were also the areas most sensitive to boundary condition errors, and correspond to areas of wave focusing. Errors in the estimation of the peak offshore wave direction were found to have the greatest impact on the accuracy of the nearshore wave predictions. The coarse directional resolution (15 degrees) of deep water spectra provided by the present generation of operational global models is shown to be a significant source of error when handcasting or forecasting nearshore waves over complex bathymetry.","PeriodicalId":431594,"journal":{"name":"OCEANS '02 MTS/IEEE","volume":"9 6 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2002-10-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":"{\"title\":\"Model predictions of nearshore processes near complex bathymetry\",\"authors\":\"J. Kaihatu, K. Edwards, W. O'Reilly\",\"doi\":\"10.1109/OCEANS.2002.1192052\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Waves undergo significant transformation over complex bathymetry, and the resulting nearshore wave conditions can be sensitive to small changes in the offshore wave forcing. A potential consequence of this transformation sensitivity is large uncertainties in modeled nearshore waves owing to the amplification of the error in the deep water spectra used as initial conditions. In preparation for the upcoming Nearshore Canyon Wave Experiment in La Jolla, CA, a boundary condition sensitivity analysis was performed over the region's submarine canyon bathymetry using the SWAN wave model. The sensitivity analysis included varying the offshore spectrum discretization (frequency and directional bandwidths), the peak period and direction of the spectra, and the frequency and directional spreads. In each case, the magnitude of the spectral variations was governed by expected uncertainties when initializing a nearshore model with a) typical buoy data for the area, and b) global WAM model hindcasts or forecasts. In addition, data from the Torrey Pines Outer Buoy (located 12 km offshore) from the first week of November 2001 were used to initialize the model, and the maximum change seen in the domain over the course of the week were compared to those derived from the sensitivity analysis. The nearshore locations that showed the largest change in wave height over time were also the areas most sensitive to boundary condition errors, and correspond to areas of wave focusing. Errors in the estimation of the peak offshore wave direction were found to have the greatest impact on the accuracy of the nearshore wave predictions. The coarse directional resolution (15 degrees) of deep water spectra provided by the present generation of operational global models is shown to be a significant source of error when handcasting or forecasting nearshore waves over complex bathymetry.\",\"PeriodicalId\":431594,\"journal\":{\"name\":\"OCEANS '02 MTS/IEEE\",\"volume\":\"9 6 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2002-10-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"8\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"OCEANS '02 MTS/IEEE\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/OCEANS.2002.1192052\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"OCEANS '02 MTS/IEEE","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/OCEANS.2002.1192052","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 8

摘要

波浪在复杂的水深测量中经历了重大的转变,由此产生的近岸波浪条件可能对近海波浪强迫的微小变化很敏感。这种转换敏感性的一个潜在后果是,由于用作初始条件的深水谱误差的放大,模拟的近岸波具有很大的不确定性。为了准备即将在加利福尼亚州拉霍亚进行的近岸峡谷波浪实验,使用SWAN波浪模型对该地区的海底峡谷测深进行了边界条件敏感性分析。灵敏度分析包括改变近海频谱离散化(频率和方向带宽)、频谱的峰值周期和方向,以及频率和方向扩展。在每种情况下,光谱变化的幅度都受初始化近岸模式时的预期不确定性的影响,该模式包括a)该地区的典型浮标数据,以及b)全球WAM模式预测或预报。此外,利用2001年11月第一周Torrey Pines外浮标(离岸12公里)的数据初始化模型,并将一周内该区域的最大变化与敏感性分析得出的数据进行比较。波高随时间变化最大的近岸位置也是对边界条件误差最敏感的区域,并且与波聚焦区域相对应。研究发现,近海波浪峰值方向的估计误差对近岸波浪预报的准确性影响最大。当前一代全球运行模式提供的深水频谱的粗方向分辨率(15度)被证明是在复杂水深测量中手工预报或预报近岸波时的一个重要误差来源。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Model predictions of nearshore processes near complex bathymetry
Waves undergo significant transformation over complex bathymetry, and the resulting nearshore wave conditions can be sensitive to small changes in the offshore wave forcing. A potential consequence of this transformation sensitivity is large uncertainties in modeled nearshore waves owing to the amplification of the error in the deep water spectra used as initial conditions. In preparation for the upcoming Nearshore Canyon Wave Experiment in La Jolla, CA, a boundary condition sensitivity analysis was performed over the region's submarine canyon bathymetry using the SWAN wave model. The sensitivity analysis included varying the offshore spectrum discretization (frequency and directional bandwidths), the peak period and direction of the spectra, and the frequency and directional spreads. In each case, the magnitude of the spectral variations was governed by expected uncertainties when initializing a nearshore model with a) typical buoy data for the area, and b) global WAM model hindcasts or forecasts. In addition, data from the Torrey Pines Outer Buoy (located 12 km offshore) from the first week of November 2001 were used to initialize the model, and the maximum change seen in the domain over the course of the week were compared to those derived from the sensitivity analysis. The nearshore locations that showed the largest change in wave height over time were also the areas most sensitive to boundary condition errors, and correspond to areas of wave focusing. Errors in the estimation of the peak offshore wave direction were found to have the greatest impact on the accuracy of the nearshore wave predictions. The coarse directional resolution (15 degrees) of deep water spectra provided by the present generation of operational global models is shown to be a significant source of error when handcasting or forecasting nearshore waves over complex bathymetry.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信