无序列序列挖掘:一种新的隐私保护方法

Stéphanie Jacquemont, F. Jacquenet, M. Sebban
{"title":"无序列序列挖掘:一种新的隐私保护方法","authors":"Stéphanie Jacquemont, F. Jacquenet, M. Sebban","doi":"10.1109/ICTAI.2006.103","DOIUrl":null,"url":null,"abstract":"During the last decade, sequential pattern mining has been the core of numerous researches. It is now possible to efficiently discover users' behavior in various domains such as purchases in supermarkets, Web site visits, etc. Nevertheless, classical algorithms do not respect individual's privacy, exploiting personal information (name, IP address, etc.). We provide an original solution to privacy preserving by using a probabilistic automaton instead of the original data. An application in car flow modeling is presented, showing the ability of our algorithm to discover frequent routes without any individual information. A comparison with SPAM is done showing that even if we sample from the automaton, our approach is more efficient","PeriodicalId":169424,"journal":{"name":"2006 18th IEEE International Conference on Tools with Artificial Intelligence (ICTAI'06)","volume":"107 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2006-11-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Sequence Mining Without Sequences: A New Way for Privacy Preserving\",\"authors\":\"Stéphanie Jacquemont, F. Jacquenet, M. Sebban\",\"doi\":\"10.1109/ICTAI.2006.103\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"During the last decade, sequential pattern mining has been the core of numerous researches. It is now possible to efficiently discover users' behavior in various domains such as purchases in supermarkets, Web site visits, etc. Nevertheless, classical algorithms do not respect individual's privacy, exploiting personal information (name, IP address, etc.). We provide an original solution to privacy preserving by using a probabilistic automaton instead of the original data. An application in car flow modeling is presented, showing the ability of our algorithm to discover frequent routes without any individual information. A comparison with SPAM is done showing that even if we sample from the automaton, our approach is more efficient\",\"PeriodicalId\":169424,\"journal\":{\"name\":\"2006 18th IEEE International Conference on Tools with Artificial Intelligence (ICTAI'06)\",\"volume\":\"107 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2006-11-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2006 18th IEEE International Conference on Tools with Artificial Intelligence (ICTAI'06)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICTAI.2006.103\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2006 18th IEEE International Conference on Tools with Artificial Intelligence (ICTAI'06)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICTAI.2006.103","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

摘要

在过去的十年中,顺序模式挖掘一直是众多研究的核心。现在可以有效地发现用户在各个领域的行为,比如在超市购物、网站访问等。然而,经典算法不尊重个人隐私,利用个人信息(姓名、IP地址等)。我们通过使用概率自动机代替原始数据提供了一种新颖的隐私保护解决方案。在汽车流建模中的应用表明,该算法能够在不需要任何个体信息的情况下发现频繁路线。与SPAM的比较表明,即使我们从自动机中采样,我们的方法也更有效
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Sequence Mining Without Sequences: A New Way for Privacy Preserving
During the last decade, sequential pattern mining has been the core of numerous researches. It is now possible to efficiently discover users' behavior in various domains such as purchases in supermarkets, Web site visits, etc. Nevertheless, classical algorithms do not respect individual's privacy, exploiting personal information (name, IP address, etc.). We provide an original solution to privacy preserving by using a probabilistic automaton instead of the original data. An application in car flow modeling is presented, showing the ability of our algorithm to discover frequent routes without any individual information. A comparison with SPAM is done showing that even if we sample from the automaton, our approach is more efficient
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信