实时文本流处理:一个动态和分布式的NLP管道

Mohammad Arshi Saloot, D. Pham
{"title":"实时文本流处理:一个动态和分布式的NLP管道","authors":"Mohammad Arshi Saloot, D. Pham","doi":"10.1145/3459104.3459198","DOIUrl":null,"url":null,"abstract":"In recent years, the need for flexible and instant Natural Language Processing (NLP) pipelines becomes more crucial. The existence of real-time data sources, such as Twitter, necessitates using real-time text analysis platforms. In addition, due to the existence of a wide range of NLP toolkits and libraries in a variety of programming languages, a streaming platform is required to combine and integrate different modules of various NLP toolkits. This study proposes a real-time architecture that uses Apache Storm and Apache Kafka to apply different NLP tasks on streams of textual data. The architecture allows developers to inject NLP modules to it via different programming languages. To compare the performance of the architecture, a series of experiments are conducted to handle OpenNLP, Fasttext, and SpaCy modules for Bahasa Malaysia and English languages. The result shows that Apache Storm achieved the lowest latency, compared with Trident and baseline experiments.","PeriodicalId":142284,"journal":{"name":"2021 International Symposium on Electrical, Electronics and Information Engineering","volume":"118 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-02-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Real-time Text Stream Processing: A Dynamic and Distributed NLP Pipeline\",\"authors\":\"Mohammad Arshi Saloot, D. Pham\",\"doi\":\"10.1145/3459104.3459198\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In recent years, the need for flexible and instant Natural Language Processing (NLP) pipelines becomes more crucial. The existence of real-time data sources, such as Twitter, necessitates using real-time text analysis platforms. In addition, due to the existence of a wide range of NLP toolkits and libraries in a variety of programming languages, a streaming platform is required to combine and integrate different modules of various NLP toolkits. This study proposes a real-time architecture that uses Apache Storm and Apache Kafka to apply different NLP tasks on streams of textual data. The architecture allows developers to inject NLP modules to it via different programming languages. To compare the performance of the architecture, a series of experiments are conducted to handle OpenNLP, Fasttext, and SpaCy modules for Bahasa Malaysia and English languages. The result shows that Apache Storm achieved the lowest latency, compared with Trident and baseline experiments.\",\"PeriodicalId\":142284,\"journal\":{\"name\":\"2021 International Symposium on Electrical, Electronics and Information Engineering\",\"volume\":\"118 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-02-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2021 International Symposium on Electrical, Electronics and Information Engineering\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3459104.3459198\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 International Symposium on Electrical, Electronics and Information Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3459104.3459198","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

近年来,对灵活和即时的自然语言处理(NLP)管道的需求变得越来越重要。实时数据源(如Twitter)的存在需要使用实时文本分析平台。此外,由于各种编程语言的NLP工具包和库种类繁多,因此需要一个流媒体平台来组合和集成各种NLP工具包的不同模块。本研究提出了一个实时架构,使用Apache Storm和Apache Kafka在文本数据流上应用不同的NLP任务。该体系结构允许开发人员通过不同的编程语言向其注入NLP模块。为了比较体系结构的性能,进行了一系列实验来处理马来文和英文的OpenNLP、Fasttext和SpaCy模块。结果表明,与Trident和基线实验相比,Apache Storm实现了最低的延迟。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Real-time Text Stream Processing: A Dynamic and Distributed NLP Pipeline
In recent years, the need for flexible and instant Natural Language Processing (NLP) pipelines becomes more crucial. The existence of real-time data sources, such as Twitter, necessitates using real-time text analysis platforms. In addition, due to the existence of a wide range of NLP toolkits and libraries in a variety of programming languages, a streaming platform is required to combine and integrate different modules of various NLP toolkits. This study proposes a real-time architecture that uses Apache Storm and Apache Kafka to apply different NLP tasks on streams of textual data. The architecture allows developers to inject NLP modules to it via different programming languages. To compare the performance of the architecture, a series of experiments are conducted to handle OpenNLP, Fasttext, and SpaCy modules for Bahasa Malaysia and English languages. The result shows that Apache Storm achieved the lowest latency, compared with Trident and baseline experiments.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信