神经网络在服务故障根本原因预测中的应用

R. Harper, P. Tee
{"title":"神经网络在服务故障根本原因预测中的应用","authors":"R. Harper, P. Tee","doi":"10.23919/INM.2017.7987422","DOIUrl":null,"url":null,"abstract":"The principal objective when monitoring compute and communications infrastructure is to minimize the Mean Time To Resolution of service-impacting incidents. Key to achieving that goal is determining which of the many alerts that are presented to an operator are likely to be the root cause of an incident. In turn this is critical in identifying which alerts should be investigated with the highest priority.","PeriodicalId":119633,"journal":{"name":"2017 IFIP/IEEE Symposium on Integrated Network and Service Management (IM)","volume":"114 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-05-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"The application of Neural Networks to predicting the root cause of service failures\",\"authors\":\"R. Harper, P. Tee\",\"doi\":\"10.23919/INM.2017.7987422\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The principal objective when monitoring compute and communications infrastructure is to minimize the Mean Time To Resolution of service-impacting incidents. Key to achieving that goal is determining which of the many alerts that are presented to an operator are likely to be the root cause of an incident. In turn this is critical in identifying which alerts should be investigated with the highest priority.\",\"PeriodicalId\":119633,\"journal\":{\"name\":\"2017 IFIP/IEEE Symposium on Integrated Network and Service Management (IM)\",\"volume\":\"114 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-05-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2017 IFIP/IEEE Symposium on Integrated Network and Service Management (IM)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.23919/INM.2017.7987422\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 IFIP/IEEE Symposium on Integrated Network and Service Management (IM)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.23919/INM.2017.7987422","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

摘要

监视计算和通信基础设施的主要目标是最小化影响服务的事件的平均解决时间。实现这一目标的关键是确定向操作员提供的众多警报中哪些可能是事件的根本原因。反过来,这对于确定应该以最高优先级调查哪些警报至关重要。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
The application of Neural Networks to predicting the root cause of service failures
The principal objective when monitoring compute and communications infrastructure is to minimize the Mean Time To Resolution of service-impacting incidents. Key to achieving that goal is determining which of the many alerts that are presented to an operator are likely to be the root cause of an incident. In turn this is critical in identifying which alerts should be investigated with the highest priority.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信