基于SIFT的实时运动目标跟踪算法

H. Qiang, C. Qian, Baojiang Zhong
{"title":"基于SIFT的实时运动目标跟踪算法","authors":"H. Qiang, C. Qian, Baojiang Zhong","doi":"10.1109/SPAC.2017.8304342","DOIUrl":null,"url":null,"abstract":"Moving target tracking is an important research area in pattern recognition, image processing and computer vision. We proposed a novel moving target tracking algorithm based on SIFT in this paper. For the high running time and large computation amount of the traditional SIFT algorithm, we design a new keypoint descriptor, reduce the keypoint dimension, improved the keypoint extraction rate. It is proved by experiments that the new algorithm meet the real-time requirement and can tracking the occludent moving target well.","PeriodicalId":161647,"journal":{"name":"2017 International Conference on Security, Pattern Analysis, and Cybernetics (SPAC)","volume":"108 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A real-time moving target tracking algorithm based on SIFT\",\"authors\":\"H. Qiang, C. Qian, Baojiang Zhong\",\"doi\":\"10.1109/SPAC.2017.8304342\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Moving target tracking is an important research area in pattern recognition, image processing and computer vision. We proposed a novel moving target tracking algorithm based on SIFT in this paper. For the high running time and large computation amount of the traditional SIFT algorithm, we design a new keypoint descriptor, reduce the keypoint dimension, improved the keypoint extraction rate. It is proved by experiments that the new algorithm meet the real-time requirement and can tracking the occludent moving target well.\",\"PeriodicalId\":161647,\"journal\":{\"name\":\"2017 International Conference on Security, Pattern Analysis, and Cybernetics (SPAC)\",\"volume\":\"108 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2017 International Conference on Security, Pattern Analysis, and Cybernetics (SPAC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/SPAC.2017.8304342\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 International Conference on Security, Pattern Analysis, and Cybernetics (SPAC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SPAC.2017.8304342","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

运动目标跟踪是模式识别、图像处理和计算机视觉等领域的一个重要研究方向。本文提出了一种基于SIFT的运动目标跟踪算法。针对传统SIFT算法运行时间长、计算量大的缺点,设计了新的关键点描述符,降低了关键点的维数,提高了关键点的提取率。实验证明,该算法满足实时性要求,能很好地跟踪被遮挡的运动目标。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A real-time moving target tracking algorithm based on SIFT
Moving target tracking is an important research area in pattern recognition, image processing and computer vision. We proposed a novel moving target tracking algorithm based on SIFT in this paper. For the high running time and large computation amount of the traditional SIFT algorithm, we design a new keypoint descriptor, reduce the keypoint dimension, improved the keypoint extraction rate. It is proved by experiments that the new algorithm meet the real-time requirement and can tracking the occludent moving target well.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信