理解加密货币市场的潜在群体结构:一个动态网络的视角

Li Guo, Yubo Tao, W. Härdle
{"title":"理解加密货币市场的潜在群体结构:一个动态网络的视角","authors":"Li Guo, Yubo Tao, W. Härdle","doi":"10.2139/ssrn.3658206","DOIUrl":null,"url":null,"abstract":"In this paper, we study the latent group structure in cryptocurrencies market by forming a dynamic return inferred network with coin attributions. We develop a dynamic covariate-assisted spectral clustering method to detect the communities in dynamic network framework and prove its uniform consistency along the horizons. Applying our new method, we show the return inferred network structure and coin attributions, including algorithm and proof types, jointly determine the market segmentation. Based on the network model, we propose a novel \\hard-to-value\" measure using the centrality scores. Further analysis reveals that the group with a lower centrality score exhibits stronger short-term return reversals. Cross-sectional return predictability further conrms the economic meanings of our grouping results and reveal important portfolio management implications.","PeriodicalId":445453,"journal":{"name":"ERN: Other Econometric Modeling: International Financial Markets - Foreign Exchange (Topic)","volume":"44 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-05-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Understanding Latent Group Structure of Cryptocurrencies Market: A Dynamic Network Perspective\",\"authors\":\"Li Guo, Yubo Tao, W. Härdle\",\"doi\":\"10.2139/ssrn.3658206\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we study the latent group structure in cryptocurrencies market by forming a dynamic return inferred network with coin attributions. We develop a dynamic covariate-assisted spectral clustering method to detect the communities in dynamic network framework and prove its uniform consistency along the horizons. Applying our new method, we show the return inferred network structure and coin attributions, including algorithm and proof types, jointly determine the market segmentation. Based on the network model, we propose a novel \\\\hard-to-value\\\" measure using the centrality scores. Further analysis reveals that the group with a lower centrality score exhibits stronger short-term return reversals. Cross-sectional return predictability further conrms the economic meanings of our grouping results and reveal important portfolio management implications.\",\"PeriodicalId\":445453,\"journal\":{\"name\":\"ERN: Other Econometric Modeling: International Financial Markets - Foreign Exchange (Topic)\",\"volume\":\"44 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-05-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ERN: Other Econometric Modeling: International Financial Markets - Foreign Exchange (Topic)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2139/ssrn.3658206\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ERN: Other Econometric Modeling: International Financial Markets - Foreign Exchange (Topic)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2139/ssrn.3658206","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

摘要

本文通过构建一个带币属性的动态回归推断网络,研究了加密货币市场的潜在群结构。本文提出了一种动态协变量辅助谱聚类方法来检测动态网络框架中的群落,并证明其在视界上的一致一致性。应用我们的新方法,我们展示了返回推断网络结构和硬币属性,包括算法和证明类型,共同决定了市场细分。在网络模型的基础上,我们提出了一种使用中心性分数的“难以评估”的新方法。进一步分析表明,中心性得分较低的组表现出更强的短期回报逆转。横断面收益可预测性进一步证实了我们分组结果的经济意义,并揭示了重要的投资组合管理含义。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Understanding Latent Group Structure of Cryptocurrencies Market: A Dynamic Network Perspective
In this paper, we study the latent group structure in cryptocurrencies market by forming a dynamic return inferred network with coin attributions. We develop a dynamic covariate-assisted spectral clustering method to detect the communities in dynamic network framework and prove its uniform consistency along the horizons. Applying our new method, we show the return inferred network structure and coin attributions, including algorithm and proof types, jointly determine the market segmentation. Based on the network model, we propose a novel \hard-to-value" measure using the centrality scores. Further analysis reveals that the group with a lower centrality score exhibits stronger short-term return reversals. Cross-sectional return predictability further conrms the economic meanings of our grouping results and reveal important portfolio management implications.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信