基于并行计算的栅格地理数据分解方法

Zhibing Jin, Yingxia Pu, Jie-chen Wang, Jingsong Ma, Gang Chen
{"title":"基于并行计算的栅格地理数据分解方法","authors":"Zhibing Jin, Yingxia Pu, Jie-chen Wang, Jingsong Ma, Gang Chen","doi":"10.1109/Geoinformatics.2012.6270298","DOIUrl":null,"url":null,"abstract":"The paper mainly studied decomposition method of raster geographic data based on parallel computing. Firstly, we structured computational transformation model of raster geographic data; Then, we designed a computational experiment to validate the computational transformation model and evaluate the performance of k-NN classification algorithm. Results of parallel computational experiment show that the model can be applied to decompose a heterogeneous spatial computational domain representation into a balanced set of computing tasks; the speedup performance of parallelizing k-NN classification algorithm based on the transformation model is superior to the results from traditional method.","PeriodicalId":259976,"journal":{"name":"2012 20th International Conference on Geoinformatics","volume":"25 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2012-06-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Decomposition method of raster geographic data based on parallel computing\",\"authors\":\"Zhibing Jin, Yingxia Pu, Jie-chen Wang, Jingsong Ma, Gang Chen\",\"doi\":\"10.1109/Geoinformatics.2012.6270298\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The paper mainly studied decomposition method of raster geographic data based on parallel computing. Firstly, we structured computational transformation model of raster geographic data; Then, we designed a computational experiment to validate the computational transformation model and evaluate the performance of k-NN classification algorithm. Results of parallel computational experiment show that the model can be applied to decompose a heterogeneous spatial computational domain representation into a balanced set of computing tasks; the speedup performance of parallelizing k-NN classification algorithm based on the transformation model is superior to the results from traditional method.\",\"PeriodicalId\":259976,\"journal\":{\"name\":\"2012 20th International Conference on Geoinformatics\",\"volume\":\"25 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2012-06-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2012 20th International Conference on Geoinformatics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/Geoinformatics.2012.6270298\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2012 20th International Conference on Geoinformatics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/Geoinformatics.2012.6270298","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

本文主要研究了基于并行计算的栅格地理数据分解方法。首先,构建了栅格地理数据的计算转换模型;然后,我们设计了一个计算实验来验证计算转换模型,并评估k-NN分类算法的性能。并行计算实验结果表明,该模型可以将异构空间计算域表示分解为平衡的计算任务集;基于转换模型的并行化k-NN分类算法的加速性能优于传统方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Decomposition method of raster geographic data based on parallel computing
The paper mainly studied decomposition method of raster geographic data based on parallel computing. Firstly, we structured computational transformation model of raster geographic data; Then, we designed a computational experiment to validate the computational transformation model and evaluate the performance of k-NN classification algorithm. Results of parallel computational experiment show that the model can be applied to decompose a heterogeneous spatial computational domain representation into a balanced set of computing tasks; the speedup performance of parallelizing k-NN classification algorithm based on the transformation model is superior to the results from traditional method.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信