变系数Cox回归模型的变量选择

Toshio Honda, W. Härdle
{"title":"变系数Cox回归模型的变量选择","authors":"Toshio Honda, W. Härdle","doi":"10.2139/ssrn.2894216","DOIUrl":null,"url":null,"abstract":"We deal with two kinds of Cox regression models with varying coefficients. The coefficients vary with time in one model. In the other model, there is an important random variable called an index variable and the coefficients vary with the variable. In both models, we have p-dimensional covariates and p increases moderately. However, it is the case that only a small part of the covariates are relevant in these situations. We carry out variable selection and estimation of the coefficient functions by using the group SCAD-type estimator and the adaptive group Lasso estimator. We examine the theoretical properties of the estimators, especially the L2 convergence rate, the sparsity, and the oracle property. Simulation studies and a real data analysis show the performance of these new techniques.","PeriodicalId":163739,"journal":{"name":"ERN: Model Construction & Selection (Topic)","volume":"80 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2012-10-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"24","resultStr":"{\"title\":\"Variable Selection in Cox Regression Models with Varying Coefficients\",\"authors\":\"Toshio Honda, W. Härdle\",\"doi\":\"10.2139/ssrn.2894216\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We deal with two kinds of Cox regression models with varying coefficients. The coefficients vary with time in one model. In the other model, there is an important random variable called an index variable and the coefficients vary with the variable. In both models, we have p-dimensional covariates and p increases moderately. However, it is the case that only a small part of the covariates are relevant in these situations. We carry out variable selection and estimation of the coefficient functions by using the group SCAD-type estimator and the adaptive group Lasso estimator. We examine the theoretical properties of the estimators, especially the L2 convergence rate, the sparsity, and the oracle property. Simulation studies and a real data analysis show the performance of these new techniques.\",\"PeriodicalId\":163739,\"journal\":{\"name\":\"ERN: Model Construction & Selection (Topic)\",\"volume\":\"80 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2012-10-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"24\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ERN: Model Construction & Selection (Topic)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2139/ssrn.2894216\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ERN: Model Construction & Selection (Topic)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2139/ssrn.2894216","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 24

摘要

本文研究了两种变系数Cox回归模型。在一个模型中,系数随时间变化。在另一个模型中,有一个重要的随机变量称为索引变量,系数随变量而变化。在这两个模型中,我们都有p维协变量,p适度增加。然而,在这些情况下,只有一小部分协变量是相关的。利用群scad型估计量和自适应群Lasso估计量对系数函数进行了变量选择和估计。我们研究了估计量的理论性质,特别是L2收敛速率、稀疏性和oracle性质。仿真研究和实际数据分析表明了这些新技术的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Variable Selection in Cox Regression Models with Varying Coefficients
We deal with two kinds of Cox regression models with varying coefficients. The coefficients vary with time in one model. In the other model, there is an important random variable called an index variable and the coefficients vary with the variable. In both models, we have p-dimensional covariates and p increases moderately. However, it is the case that only a small part of the covariates are relevant in these situations. We carry out variable selection and estimation of the coefficient functions by using the group SCAD-type estimator and the adaptive group Lasso estimator. We examine the theoretical properties of the estimators, especially the L2 convergence rate, the sparsity, and the oracle property. Simulation studies and a real data analysis show the performance of these new techniques.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信