{"title":"铌酸锂中抗光学损伤杂质","authors":"T. Volk, N. Rubinina, S. Stizza","doi":"10.1364/JOSAB.11.001681","DOIUrl":null,"url":null,"abstract":"Magnesium1-3, zinc4-6 and some other impurities (substituting mainly for the lithium sites) drastically change optical properties of LiNbO3. In particular the value of optical damage (photorefraction) in LiNbO3:Me (Me = Mg,Zn,…) is sharply reduced compared with undoped LiNbO32-6. Similarly Me impurities tend to supress so-called \"dark trace” effect4-6 (that means stable darkening under intensive visible laser radiation).","PeriodicalId":355924,"journal":{"name":"Photorefractive Materials, Effects, and Devices","volume":"116 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1994-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"233","resultStr":"{\"title\":\"Optical Damage Resistant Impurities in Lithium Niobate\",\"authors\":\"T. Volk, N. Rubinina, S. Stizza\",\"doi\":\"10.1364/JOSAB.11.001681\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Magnesium1-3, zinc4-6 and some other impurities (substituting mainly for the lithium sites) drastically change optical properties of LiNbO3. In particular the value of optical damage (photorefraction) in LiNbO3:Me (Me = Mg,Zn,…) is sharply reduced compared with undoped LiNbO32-6. Similarly Me impurities tend to supress so-called \\\"dark trace” effect4-6 (that means stable darkening under intensive visible laser radiation).\",\"PeriodicalId\":355924,\"journal\":{\"name\":\"Photorefractive Materials, Effects, and Devices\",\"volume\":\"116 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1994-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"233\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Photorefractive Materials, Effects, and Devices\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1364/JOSAB.11.001681\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Photorefractive Materials, Effects, and Devices","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1364/JOSAB.11.001681","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Optical Damage Resistant Impurities in Lithium Niobate
Magnesium1-3, zinc4-6 and some other impurities (substituting mainly for the lithium sites) drastically change optical properties of LiNbO3. In particular the value of optical damage (photorefraction) in LiNbO3:Me (Me = Mg,Zn,…) is sharply reduced compared with undoped LiNbO32-6. Similarly Me impurities tend to supress so-called "dark trace” effect4-6 (that means stable darkening under intensive visible laser radiation).