{"title":"通用编码下参数估计器可实现收敛率的界","authors":"N. Merhav","doi":"10.1109/ISIT.1994.394935","DOIUrl":null,"url":null,"abstract":"Lower bounds on achievable convergence rates of parameter estimators towards the true parameter, are derived via universal coding considerations. It is shown that for a parametric class of sources, if there exists a universal lossless code whose redundancy decays sufficiently rapidly, then it induces a limitation on the fastest achievable convergence rate of any parameter estimator, at any value of the true parameter, with a possible exception of a vanishingly small subset of parameter values.<<ETX>>","PeriodicalId":331390,"journal":{"name":"Proceedings of 1994 IEEE International Symposium on Information Theory","volume":"44 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1994-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Bounds on achievable convergence rates of parameter estimators via universal coding\",\"authors\":\"N. Merhav\",\"doi\":\"10.1109/ISIT.1994.394935\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Lower bounds on achievable convergence rates of parameter estimators towards the true parameter, are derived via universal coding considerations. It is shown that for a parametric class of sources, if there exists a universal lossless code whose redundancy decays sufficiently rapidly, then it induces a limitation on the fastest achievable convergence rate of any parameter estimator, at any value of the true parameter, with a possible exception of a vanishingly small subset of parameter values.<<ETX>>\",\"PeriodicalId\":331390,\"journal\":{\"name\":\"Proceedings of 1994 IEEE International Symposium on Information Theory\",\"volume\":\"44 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1994-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of 1994 IEEE International Symposium on Information Theory\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ISIT.1994.394935\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of 1994 IEEE International Symposium on Information Theory","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISIT.1994.394935","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Bounds on achievable convergence rates of parameter estimators via universal coding
Lower bounds on achievable convergence rates of parameter estimators towards the true parameter, are derived via universal coding considerations. It is shown that for a parametric class of sources, if there exists a universal lossless code whose redundancy decays sufficiently rapidly, then it induces a limitation on the fastest achievable convergence rate of any parameter estimator, at any value of the true parameter, with a possible exception of a vanishingly small subset of parameter values.<>