通用编码下参数估计器可实现收敛率的界

N. Merhav
{"title":"通用编码下参数估计器可实现收敛率的界","authors":"N. Merhav","doi":"10.1109/ISIT.1994.394935","DOIUrl":null,"url":null,"abstract":"Lower bounds on achievable convergence rates of parameter estimators towards the true parameter, are derived via universal coding considerations. It is shown that for a parametric class of sources, if there exists a universal lossless code whose redundancy decays sufficiently rapidly, then it induces a limitation on the fastest achievable convergence rate of any parameter estimator, at any value of the true parameter, with a possible exception of a vanishingly small subset of parameter values.<<ETX>>","PeriodicalId":331390,"journal":{"name":"Proceedings of 1994 IEEE International Symposium on Information Theory","volume":"44 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1994-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Bounds on achievable convergence rates of parameter estimators via universal coding\",\"authors\":\"N. Merhav\",\"doi\":\"10.1109/ISIT.1994.394935\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Lower bounds on achievable convergence rates of parameter estimators towards the true parameter, are derived via universal coding considerations. It is shown that for a parametric class of sources, if there exists a universal lossless code whose redundancy decays sufficiently rapidly, then it induces a limitation on the fastest achievable convergence rate of any parameter estimator, at any value of the true parameter, with a possible exception of a vanishingly small subset of parameter values.<<ETX>>\",\"PeriodicalId\":331390,\"journal\":{\"name\":\"Proceedings of 1994 IEEE International Symposium on Information Theory\",\"volume\":\"44 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1994-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of 1994 IEEE International Symposium on Information Theory\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ISIT.1994.394935\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of 1994 IEEE International Symposium on Information Theory","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISIT.1994.394935","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

参数估计器对真参数的可实现收敛率的下界,通过通用编码的考虑得到。结果表明,对于一类参数源,如果存在一个通用无损码,其冗余度衰减得足够快,那么它会导致任何参数估计量在真参数的任何值处的最快可实现收敛速率的限制,除了参数值的一个极小子集可能是例外。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Bounds on achievable convergence rates of parameter estimators via universal coding
Lower bounds on achievable convergence rates of parameter estimators towards the true parameter, are derived via universal coding considerations. It is shown that for a parametric class of sources, if there exists a universal lossless code whose redundancy decays sufficiently rapidly, then it induces a limitation on the fastest achievable convergence rate of any parameter estimator, at any value of the true parameter, with a possible exception of a vanishingly small subset of parameter values.<>
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信