基于改进统一粒子群算法的水轮机调速器系统辨识

Jian Xiao, Jian-zhong Zhou, Pangao Kou, Xiaoyuan Zhang, Xianguo Wu, Mu Li
{"title":"基于改进统一粒子群算法的水轮机调速器系统辨识","authors":"Jian Xiao, Jian-zhong Zhou, Pangao Kou, Xiaoyuan Zhang, Xianguo Wu, Mu Li","doi":"10.1109/ICCIAUTOM.2011.6183933","DOIUrl":null,"url":null,"abstract":"In this paper, we present a novel evolutionary algorithm-based approach to identification of hydraulic turbine governor system (HTGS). A new variant of particle swarm optimization (PSO) technique named unified PSO (UPSO) is employed and improved to search for optimal parameters of HTGS by minimizing errors between the model's evaluated outputs and the actual ones. The performance of the improved unified PSO (IUPSO) is compared with standard PSO and UPSO algorithms tested via numerical simulation. Identification results aptly show that the IUPSO algorithm has the advantage of convergence capability and solution quality and it provides a new way for parameter identification of hydraulic turbine governor system.","PeriodicalId":177039,"journal":{"name":"2011 2nd International Conference on Control, Instrumentation and Automation (ICCIA)","volume":"48 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2011-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Identification of hydraulic turbine governor system based on improved unified PSO algorithm\",\"authors\":\"Jian Xiao, Jian-zhong Zhou, Pangao Kou, Xiaoyuan Zhang, Xianguo Wu, Mu Li\",\"doi\":\"10.1109/ICCIAUTOM.2011.6183933\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we present a novel evolutionary algorithm-based approach to identification of hydraulic turbine governor system (HTGS). A new variant of particle swarm optimization (PSO) technique named unified PSO (UPSO) is employed and improved to search for optimal parameters of HTGS by minimizing errors between the model's evaluated outputs and the actual ones. The performance of the improved unified PSO (IUPSO) is compared with standard PSO and UPSO algorithms tested via numerical simulation. Identification results aptly show that the IUPSO algorithm has the advantage of convergence capability and solution quality and it provides a new way for parameter identification of hydraulic turbine governor system.\",\"PeriodicalId\":177039,\"journal\":{\"name\":\"2011 2nd International Conference on Control, Instrumentation and Automation (ICCIA)\",\"volume\":\"48 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2011-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2011 2nd International Conference on Control, Instrumentation and Automation (ICCIA)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICCIAUTOM.2011.6183933\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2011 2nd International Conference on Control, Instrumentation and Automation (ICCIA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICCIAUTOM.2011.6183933","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文提出了一种基于进化算法的水轮机调速器辨识方法。提出了一种新的粒子群优化算法,即统一粒子群优化算法(UPSO),并对其进行了改进,通过最小化模型评估输出与实际输出之间的误差来搜索HTGS的最优参数。将改进的统一粒子群算法(IUPSO)与标准粒子群算法和UPSO算法进行了性能比较。辨识结果表明,IUPSO算法具有较好的收敛能力和求解质量,为水轮机调速器系统参数辨识提供了一种新的方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Identification of hydraulic turbine governor system based on improved unified PSO algorithm
In this paper, we present a novel evolutionary algorithm-based approach to identification of hydraulic turbine governor system (HTGS). A new variant of particle swarm optimization (PSO) technique named unified PSO (UPSO) is employed and improved to search for optimal parameters of HTGS by minimizing errors between the model's evaluated outputs and the actual ones. The performance of the improved unified PSO (IUPSO) is compared with standard PSO and UPSO algorithms tested via numerical simulation. Identification results aptly show that the IUPSO algorithm has the advantage of convergence capability and solution quality and it provides a new way for parameter identification of hydraulic turbine governor system.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信