基于Sentinel-2数据的智利火灾区域检测随机森林分类器优化

E. Roteta, P. Oliva
{"title":"基于Sentinel-2数据的智利火灾区域检测随机森林分类器优化","authors":"E. Roteta, P. Oliva","doi":"10.1109/LAGIRS48042.2020.9165585","DOIUrl":null,"url":null,"abstract":"Due to the high variability of biomes throughout the country, the classification of burned areas is a challenge. We calibrated a random forest classifier to account for all this variability and ensure an accurate classification of burned areas. The classifier was optimized in three steps, generating a version of the burned area product in each step. According to the visual assessment, the final version of the BA product is more accurate than the perimeters created by the Chilean National Forest Corporation, which overestimate large burned areas because it does not consider the inner unburned areas and, it omits some small burned areas. The total burned surface from January to March 2017 was 5,000 km2 in Chile, 20 % of it belonging to a single burned area in the Maule Region, and with 91 % of the total burned surface distributed in 6 adjacent regions of Central Chile.","PeriodicalId":111863,"journal":{"name":"2020 IEEE Latin American GRSS & ISPRS Remote Sensing Conference (LAGIRS)","volume":"44 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Optimization Of A Random Forest Classifier For Burned Area Detection In Chile Using Sentinel-2 Data\",\"authors\":\"E. Roteta, P. Oliva\",\"doi\":\"10.1109/LAGIRS48042.2020.9165585\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Due to the high variability of biomes throughout the country, the classification of burned areas is a challenge. We calibrated a random forest classifier to account for all this variability and ensure an accurate classification of burned areas. The classifier was optimized in three steps, generating a version of the burned area product in each step. According to the visual assessment, the final version of the BA product is more accurate than the perimeters created by the Chilean National Forest Corporation, which overestimate large burned areas because it does not consider the inner unburned areas and, it omits some small burned areas. The total burned surface from January to March 2017 was 5,000 km2 in Chile, 20 % of it belonging to a single burned area in the Maule Region, and with 91 % of the total burned surface distributed in 6 adjacent regions of Central Chile.\",\"PeriodicalId\":111863,\"journal\":{\"name\":\"2020 IEEE Latin American GRSS & ISPRS Remote Sensing Conference (LAGIRS)\",\"volume\":\"44 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-03-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2020 IEEE Latin American GRSS & ISPRS Remote Sensing Conference (LAGIRS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/LAGIRS48042.2020.9165585\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 IEEE Latin American GRSS & ISPRS Remote Sensing Conference (LAGIRS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/LAGIRS48042.2020.9165585","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

由于全国各地生物群落的高度变异性,对烧毁地区进行分类是一项挑战。我们校准了一个随机森林分类器,以考虑所有这些变化,并确保对燃烧区域进行准确分类。该分类器分三步优化,每一步生成一个版本的烧伤面积产物。根据视觉评估,BA产品的最终版本比智利国家森林公司创建的周界更准确,智利国家森林公司由于没有考虑内部未燃烧区域而高估了大面积燃烧区域,并且忽略了一些小的燃烧区域。2017年1月至3月,智利的总燃烧面积为5000平方公里,其中20%属于Maule地区的单一燃烧面积,91%的总燃烧面积分布在智利中部的6个相邻地区。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Optimization Of A Random Forest Classifier For Burned Area Detection In Chile Using Sentinel-2 Data
Due to the high variability of biomes throughout the country, the classification of burned areas is a challenge. We calibrated a random forest classifier to account for all this variability and ensure an accurate classification of burned areas. The classifier was optimized in three steps, generating a version of the burned area product in each step. According to the visual assessment, the final version of the BA product is more accurate than the perimeters created by the Chilean National Forest Corporation, which overestimate large burned areas because it does not consider the inner unburned areas and, it omits some small burned areas. The total burned surface from January to March 2017 was 5,000 km2 in Chile, 20 % of it belonging to a single burned area in the Maule Region, and with 91 % of the total burned surface distributed in 6 adjacent regions of Central Chile.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信