求解量子退火炉上的大最小顶点覆盖问题

Elijah Pelofske, Georg Hahn, H. Djidjev
{"title":"求解量子退火炉上的大最小顶点覆盖问题","authors":"Elijah Pelofske, Georg Hahn, H. Djidjev","doi":"10.1145/3310273.3321562","DOIUrl":null,"url":null,"abstract":"We consider the minimum vertex cover problem having applications in e.g. biochemistry and network security. Quantum annealers can find the optimum solution of such NP-hard problems, given they can be embedded on the hardware. This is often infeasible due to limitations of the hardware connectivity structure. This paper presents a decomposition algorithm for the minimum vertex cover problem: The algorithm recursively divides an arbitrary problem until the generated subproblems can be embedded and solved on the annealer. To speed up the decomposition, we propose several pruning and reduction techniques. The performance of our algorithm is assessed in a simulation study.","PeriodicalId":431860,"journal":{"name":"Proceedings of the 16th ACM International Conference on Computing Frontiers","volume":"10 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-03-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"27","resultStr":"{\"title\":\"Solving large minimum vertex cover problems on a quantum annealer\",\"authors\":\"Elijah Pelofske, Georg Hahn, H. Djidjev\",\"doi\":\"10.1145/3310273.3321562\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We consider the minimum vertex cover problem having applications in e.g. biochemistry and network security. Quantum annealers can find the optimum solution of such NP-hard problems, given they can be embedded on the hardware. This is often infeasible due to limitations of the hardware connectivity structure. This paper presents a decomposition algorithm for the minimum vertex cover problem: The algorithm recursively divides an arbitrary problem until the generated subproblems can be embedded and solved on the annealer. To speed up the decomposition, we propose several pruning and reduction techniques. The performance of our algorithm is assessed in a simulation study.\",\"PeriodicalId\":431860,\"journal\":{\"name\":\"Proceedings of the 16th ACM International Conference on Computing Frontiers\",\"volume\":\"10 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-03-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"27\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 16th ACM International Conference on Computing Frontiers\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3310273.3321562\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 16th ACM International Conference on Computing Frontiers","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3310273.3321562","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 27

摘要

我们考虑了最小顶点覆盖问题在生物化学和网络安全等领域的应用。量子退火器可以找到这种np困难问题的最佳解决方案,因为它们可以嵌入在硬件上。由于硬件连接结构的限制,这通常是不可行的。提出了一种最小顶点覆盖问题的分解算法:该算法递归地对任意问题进行分解,直到生成的子问题可以嵌入并求解到退火机上。为了加速分解,我们提出了几种修剪和还原技术。在仿真研究中对算法的性能进行了评估。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Solving large minimum vertex cover problems on a quantum annealer
We consider the minimum vertex cover problem having applications in e.g. biochemistry and network security. Quantum annealers can find the optimum solution of such NP-hard problems, given they can be embedded on the hardware. This is often infeasible due to limitations of the hardware connectivity structure. This paper presents a decomposition algorithm for the minimum vertex cover problem: The algorithm recursively divides an arbitrary problem until the generated subproblems can be embedded and solved on the annealer. To speed up the decomposition, we propose several pruning and reduction techniques. The performance of our algorithm is assessed in a simulation study.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信