对称质因数快速傅里叶变换算法

J. S. Otto
{"title":"对称质因数快速傅里叶变换算法","authors":"J. S. Otto","doi":"10.1137/0910028","DOIUrl":null,"url":null,"abstract":"The prime factor algorithm (PFA) is a fast algorithm for the evaluation of the discrete Fourier transform (DFT), applicable when the sequence length N is a product of relative primes. PFAs are presented that take advantage of the symmetry in a real-even or real-odd sequence. These algorithms require only one-fourth the real arithmetic and storage requirements of the complex PFA. As with existing state-of-the-art PFAs, these algorithms can be performed in-place and in-order.","PeriodicalId":200176,"journal":{"name":"Siam Journal on Scientific and Statistical Computing","volume":"51 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1989-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Symmetric prime factor fast fourier transform algorithms\",\"authors\":\"J. S. Otto\",\"doi\":\"10.1137/0910028\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The prime factor algorithm (PFA) is a fast algorithm for the evaluation of the discrete Fourier transform (DFT), applicable when the sequence length N is a product of relative primes. PFAs are presented that take advantage of the symmetry in a real-even or real-odd sequence. These algorithms require only one-fourth the real arithmetic and storage requirements of the complex PFA. As with existing state-of-the-art PFAs, these algorithms can be performed in-place and in-order.\",\"PeriodicalId\":200176,\"journal\":{\"name\":\"Siam Journal on Scientific and Statistical Computing\",\"volume\":\"51 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1989-05-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Siam Journal on Scientific and Statistical Computing\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1137/0910028\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Siam Journal on Scientific and Statistical Computing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1137/0910028","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

素数因子算法(PFA)是一种计算离散傅立叶变换(DFT)的快速算法,适用于序列长度N是相对素数的乘积的情况。提出了一种利用实偶或实奇序列的对称性的pfa。这些算法只需要复杂PFA实际运算和存储需求的四分之一。与现有的最先进的PFAs一样,这些算法可以按顺序就地执行。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Symmetric prime factor fast fourier transform algorithms
The prime factor algorithm (PFA) is a fast algorithm for the evaluation of the discrete Fourier transform (DFT), applicable when the sequence length N is a product of relative primes. PFAs are presented that take advantage of the symmetry in a real-even or real-odd sequence. These algorithms require only one-fourth the real arithmetic and storage requirements of the complex PFA. As with existing state-of-the-art PFAs, these algorithms can be performed in-place and in-order.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信