{"title":"基于SQL数据库的可扩展分类","authors":"S. Chaudhuri, U. Fayyad, J. Bernhardt","doi":"10.1109/ICDE.1999.754963","DOIUrl":null,"url":null,"abstract":"We identify data-intensive operations that are common to classifiers and develop a middleware that decomposes and schedules these operations efficiently using a backend SQL database. Our approach has the added advantage of not requiring any specialized physical data organization. We demonstrate the scalability characteristics of our enhanced client with experiments on Microsoft SQL Server 7.0 by varying data size, number of attributes and characteristics of decision trees.","PeriodicalId":236128,"journal":{"name":"Proceedings 15th International Conference on Data Engineering (Cat. No.99CB36337)","volume":"114 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1999-03-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"56","resultStr":"{\"title\":\"Scalable classification over SQL databases\",\"authors\":\"S. Chaudhuri, U. Fayyad, J. Bernhardt\",\"doi\":\"10.1109/ICDE.1999.754963\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We identify data-intensive operations that are common to classifiers and develop a middleware that decomposes and schedules these operations efficiently using a backend SQL database. Our approach has the added advantage of not requiring any specialized physical data organization. We demonstrate the scalability characteristics of our enhanced client with experiments on Microsoft SQL Server 7.0 by varying data size, number of attributes and characteristics of decision trees.\",\"PeriodicalId\":236128,\"journal\":{\"name\":\"Proceedings 15th International Conference on Data Engineering (Cat. No.99CB36337)\",\"volume\":\"114 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1999-03-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"56\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings 15th International Conference on Data Engineering (Cat. No.99CB36337)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICDE.1999.754963\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings 15th International Conference on Data Engineering (Cat. No.99CB36337)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICDE.1999.754963","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 56
摘要
我们确定了分类器常见的数据密集型操作,并开发了一个中间件,该中间件使用后端SQL数据库有效地分解和调度这些操作。我们的方法还有一个额外的优点,那就是不需要任何专门的物理数据组织。我们通过在Microsoft SQL Server 7.0上进行实验,通过改变数据大小、属性数量和决策树的特征来展示增强客户端的可伸缩性特征。
We identify data-intensive operations that are common to classifiers and develop a middleware that decomposes and schedules these operations efficiently using a backend SQL database. Our approach has the added advantage of not requiring any specialized physical data organization. We demonstrate the scalability characteristics of our enhanced client with experiments on Microsoft SQL Server 7.0 by varying data size, number of attributes and characteristics of decision trees.