{"title":"基于机器学习的物联网攻击检测方法的分类和挑战","authors":"Omair Faraj, D. Megías, A. Ahmad, Joaquín García","doi":"10.1145/3407023.3407048","DOIUrl":null,"url":null,"abstract":"The insecure growth of Internet-of-Things (IoT) can threaten its promising benefits to our daily life activities. Weak designs, low computational capabilities, and faulty protocol implementations are just a few examples that explain why IoT devices are nowadays highly prone to cyber-attacks. In this survey paper, we review approaches addressing this problem. We focus on machine learning-based solutions as a representative trend in the related literature. We survey and classify Machine Learning (ML)-based techniques that are suitable for the construction of Intrusion Detection Systems (IDS) for IoT. We contribute with a detailed classification of each approach based on our own taxonomy. Open issues and research challenges are also discussed and provided.","PeriodicalId":121225,"journal":{"name":"Proceedings of the 15th International Conference on Availability, Reliability and Security","volume":"30 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-07-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"10","resultStr":"{\"title\":\"Taxonomy and challenges in machine learning-based approaches to detect attacks in the internet of things\",\"authors\":\"Omair Faraj, D. Megías, A. Ahmad, Joaquín García\",\"doi\":\"10.1145/3407023.3407048\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The insecure growth of Internet-of-Things (IoT) can threaten its promising benefits to our daily life activities. Weak designs, low computational capabilities, and faulty protocol implementations are just a few examples that explain why IoT devices are nowadays highly prone to cyber-attacks. In this survey paper, we review approaches addressing this problem. We focus on machine learning-based solutions as a representative trend in the related literature. We survey and classify Machine Learning (ML)-based techniques that are suitable for the construction of Intrusion Detection Systems (IDS) for IoT. We contribute with a detailed classification of each approach based on our own taxonomy. Open issues and research challenges are also discussed and provided.\",\"PeriodicalId\":121225,\"journal\":{\"name\":\"Proceedings of the 15th International Conference on Availability, Reliability and Security\",\"volume\":\"30 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-07-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"10\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 15th International Conference on Availability, Reliability and Security\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3407023.3407048\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 15th International Conference on Availability, Reliability and Security","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3407023.3407048","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Taxonomy and challenges in machine learning-based approaches to detect attacks in the internet of things
The insecure growth of Internet-of-Things (IoT) can threaten its promising benefits to our daily life activities. Weak designs, low computational capabilities, and faulty protocol implementations are just a few examples that explain why IoT devices are nowadays highly prone to cyber-attacks. In this survey paper, we review approaches addressing this problem. We focus on machine learning-based solutions as a representative trend in the related literature. We survey and classify Machine Learning (ML)-based techniques that are suitable for the construction of Intrusion Detection Systems (IDS) for IoT. We contribute with a detailed classification of each approach based on our own taxonomy. Open issues and research challenges are also discussed and provided.