D. Beckingsale, T. Scogland, J. Burmark, R. Hornung, Holger E. Jones, W. Killian, A. Kunen, Olga Pearce, P. Robinson, B. Ryujin
{"title":"RAJA:大规模科学应用的便携性能","authors":"D. Beckingsale, T. Scogland, J. Burmark, R. Hornung, Holger E. Jones, W. Killian, A. Kunen, Olga Pearce, P. Robinson, B. Ryujin","doi":"10.1109/P3HPC49587.2019.00012","DOIUrl":null,"url":null,"abstract":"Modern high-performance computing systems are diverse, with hardware designs ranging from homogeneous multi- core CPUs to GPU or FPGA accelerated systems. Achieving desir- able application performance often requires choosing a program- ming model best suited to a particular platform. For large codes used daily in production that are under continual development, architecture-specific ports are untenable. Maintainability re- quires single-source application code that is performance portable across a range of architectures and programming models. In this paper we describe RAJA, a portability layer that enables C++ applications to leverage various programming models, and thus architectures, with a single-source codebase. We describe preliminary results using RAJA in three large production codes at Lawrence Livermore National Laboratory, observing 17×, 13× and 12× speedup on GPU-only over CPU- only nodes with single-source application code in each case.","PeriodicalId":377385,"journal":{"name":"2019 IEEE/ACM International Workshop on Performance, Portability and Productivity in HPC (P3HPC)","volume":"100 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"114","resultStr":"{\"title\":\"RAJA: Portable Performance for Large-Scale Scientific Applications\",\"authors\":\"D. Beckingsale, T. Scogland, J. Burmark, R. Hornung, Holger E. Jones, W. Killian, A. Kunen, Olga Pearce, P. Robinson, B. Ryujin\",\"doi\":\"10.1109/P3HPC49587.2019.00012\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Modern high-performance computing systems are diverse, with hardware designs ranging from homogeneous multi- core CPUs to GPU or FPGA accelerated systems. Achieving desir- able application performance often requires choosing a program- ming model best suited to a particular platform. For large codes used daily in production that are under continual development, architecture-specific ports are untenable. Maintainability re- quires single-source application code that is performance portable across a range of architectures and programming models. In this paper we describe RAJA, a portability layer that enables C++ applications to leverage various programming models, and thus architectures, with a single-source codebase. We describe preliminary results using RAJA in three large production codes at Lawrence Livermore National Laboratory, observing 17×, 13× and 12× speedup on GPU-only over CPU- only nodes with single-source application code in each case.\",\"PeriodicalId\":377385,\"journal\":{\"name\":\"2019 IEEE/ACM International Workshop on Performance, Portability and Productivity in HPC (P3HPC)\",\"volume\":\"100 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"114\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2019 IEEE/ACM International Workshop on Performance, Portability and Productivity in HPC (P3HPC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/P3HPC49587.2019.00012\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 IEEE/ACM International Workshop on Performance, Portability and Productivity in HPC (P3HPC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/P3HPC49587.2019.00012","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
RAJA: Portable Performance for Large-Scale Scientific Applications
Modern high-performance computing systems are diverse, with hardware designs ranging from homogeneous multi- core CPUs to GPU or FPGA accelerated systems. Achieving desir- able application performance often requires choosing a program- ming model best suited to a particular platform. For large codes used daily in production that are under continual development, architecture-specific ports are untenable. Maintainability re- quires single-source application code that is performance portable across a range of architectures and programming models. In this paper we describe RAJA, a portability layer that enables C++ applications to leverage various programming models, and thus architectures, with a single-source codebase. We describe preliminary results using RAJA in three large production codes at Lawrence Livermore National Laboratory, observing 17×, 13× and 12× speedup on GPU-only over CPU- only nodes with single-source application code in each case.