并行矩阵乘法中大小矩阵的问题

C. Piano
{"title":"并行矩阵乘法中大小矩阵的问题","authors":"C. Piano","doi":"10.1080/1063719031000087996","DOIUrl":null,"url":null,"abstract":"In this paper we discuss the case in which, using the generalized Cannon's algorithm, it is possible to reduce communications in matrix multiplication. We then apply reduction of communications to the case in which we have to multiply large matrices, in particular rectangular matrices. Two strategies are proposed to solve the problem of multiplying two large squared matrices. For the case in which we have to deal with small matrices, some methods are proposed to use the entire number of processors.","PeriodicalId":406098,"journal":{"name":"Parallel Algorithms and Applications","volume":"81 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2003-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The problem of small and large matrices in parallel Matrix Multiplication\",\"authors\":\"C. Piano\",\"doi\":\"10.1080/1063719031000087996\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper we discuss the case in which, using the generalized Cannon's algorithm, it is possible to reduce communications in matrix multiplication. We then apply reduction of communications to the case in which we have to multiply large matrices, in particular rectangular matrices. Two strategies are proposed to solve the problem of multiplying two large squared matrices. For the case in which we have to deal with small matrices, some methods are proposed to use the entire number of processors.\",\"PeriodicalId\":406098,\"journal\":{\"name\":\"Parallel Algorithms and Applications\",\"volume\":\"81 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2003-05-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Parallel Algorithms and Applications\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1080/1063719031000087996\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Parallel Algorithms and Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1080/1063719031000087996","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文讨论了利用广义Cannon算法可以减少矩阵乘法中的通信的情况。然后我们将通信简化应用于我们必须乘大矩阵的情况,特别是矩形矩阵。提出了两种策略来解决两个大的平方矩阵的乘法问题。对于我们必须处理小矩阵的情况,提出了一些使用整个处理器数量的方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
The problem of small and large matrices in parallel Matrix Multiplication
In this paper we discuss the case in which, using the generalized Cannon's algorithm, it is possible to reduce communications in matrix multiplication. We then apply reduction of communications to the case in which we have to multiply large matrices, in particular rectangular matrices. Two strategies are proposed to solve the problem of multiplying two large squared matrices. For the case in which we have to deal with small matrices, some methods are proposed to use the entire number of processors.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信