Shaharam Eivazi, Thiago Santini, Alireza Keshavarzi, Thomas C. Kübler, Andrea Mazzei
{"title":"通过特定领域数据增强改进基于cnn的实时瞳孔检测","authors":"Shaharam Eivazi, Thiago Santini, Alireza Keshavarzi, Thomas C. Kübler, Andrea Mazzei","doi":"10.1145/3314111.3319914","DOIUrl":null,"url":null,"abstract":"Deep learning is a promising technique for real-world pupil detection. However, the small amount of available accurately-annotated data poses a challenge when training such networks. Here, we utilize non-challenging eye videos where algorithmic approaches perform virtually without errors to automatically generate a foundational data set containing subpixel pupil annotations. Then, we propose multiple domain-specific data augmentation methods to create unique training sets containing controlled distributions of pupil-detection challenges. The feasibility, convenience, and advantage of this approach is demonstrated by training a CNN with these datasets. The resulting network outperformed current methods in multiple publicly-available, realistic, and challenging datasets, despite being trained solely with the augmented eye images. This network also exhibited better generalization w.r.t. the latest state-of-the-art CNN: Whereas on datasets similar to training data, the nets displayed similar performance, on datasets unseen to both networks, ours outperformed the state-of-the-art by ≈27% in terms of detection rate.","PeriodicalId":161901,"journal":{"name":"Proceedings of the 11th ACM Symposium on Eye Tracking Research & Applications","volume":"30 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-06-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"29","resultStr":"{\"title\":\"Improving real-time CNN-based pupil detection through domain-specific data augmentation\",\"authors\":\"Shaharam Eivazi, Thiago Santini, Alireza Keshavarzi, Thomas C. Kübler, Andrea Mazzei\",\"doi\":\"10.1145/3314111.3319914\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Deep learning is a promising technique for real-world pupil detection. However, the small amount of available accurately-annotated data poses a challenge when training such networks. Here, we utilize non-challenging eye videos where algorithmic approaches perform virtually without errors to automatically generate a foundational data set containing subpixel pupil annotations. Then, we propose multiple domain-specific data augmentation methods to create unique training sets containing controlled distributions of pupil-detection challenges. The feasibility, convenience, and advantage of this approach is demonstrated by training a CNN with these datasets. The resulting network outperformed current methods in multiple publicly-available, realistic, and challenging datasets, despite being trained solely with the augmented eye images. This network also exhibited better generalization w.r.t. the latest state-of-the-art CNN: Whereas on datasets similar to training data, the nets displayed similar performance, on datasets unseen to both networks, ours outperformed the state-of-the-art by ≈27% in terms of detection rate.\",\"PeriodicalId\":161901,\"journal\":{\"name\":\"Proceedings of the 11th ACM Symposium on Eye Tracking Research & Applications\",\"volume\":\"30 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-06-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"29\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 11th ACM Symposium on Eye Tracking Research & Applications\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3314111.3319914\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 11th ACM Symposium on Eye Tracking Research & Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3314111.3319914","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Improving real-time CNN-based pupil detection through domain-specific data augmentation
Deep learning is a promising technique for real-world pupil detection. However, the small amount of available accurately-annotated data poses a challenge when training such networks. Here, we utilize non-challenging eye videos where algorithmic approaches perform virtually without errors to automatically generate a foundational data set containing subpixel pupil annotations. Then, we propose multiple domain-specific data augmentation methods to create unique training sets containing controlled distributions of pupil-detection challenges. The feasibility, convenience, and advantage of this approach is demonstrated by training a CNN with these datasets. The resulting network outperformed current methods in multiple publicly-available, realistic, and challenging datasets, despite being trained solely with the augmented eye images. This network also exhibited better generalization w.r.t. the latest state-of-the-art CNN: Whereas on datasets similar to training data, the nets displayed similar performance, on datasets unseen to both networks, ours outperformed the state-of-the-art by ≈27% in terms of detection rate.