启发式搜索中的结构偏差(学生摘要)

Alison Paredes
{"title":"启发式搜索中的结构偏差(学生摘要)","authors":"Alison Paredes","doi":"10.1609/socs.v16i1.27311","DOIUrl":null,"url":null,"abstract":"In this line of work, we consider the possibility that some fast heuristic search methods introduce structural bias, which can cause problems similar to sampling-bias for downstream statistical learning methods. We seek to understand the source of this kind of bias and to develop efficient alternatives. Here we present some preliminary results in developing a variation of canonical A* that can overcome the structural bias introduced by first-in-first-out duplicate detection, which we observed under the condition of variable heuristic error. These results inspire a model of greedy-best-first-search for this problem in the satisficing setting. We hope to apply our approach in a novel planning application--activity selection for agent-based modeling for epidemiology--where planning technology should avoid introducing structural bias if possible.","PeriodicalId":425645,"journal":{"name":"Symposium on Combinatorial Search","volume":"24 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-07-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Structural Bias in Heuristic Search (Student Abstract)\",\"authors\":\"Alison Paredes\",\"doi\":\"10.1609/socs.v16i1.27311\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this line of work, we consider the possibility that some fast heuristic search methods introduce structural bias, which can cause problems similar to sampling-bias for downstream statistical learning methods. We seek to understand the source of this kind of bias and to develop efficient alternatives. Here we present some preliminary results in developing a variation of canonical A* that can overcome the structural bias introduced by first-in-first-out duplicate detection, which we observed under the condition of variable heuristic error. These results inspire a model of greedy-best-first-search for this problem in the satisficing setting. We hope to apply our approach in a novel planning application--activity selection for agent-based modeling for epidemiology--where planning technology should avoid introducing structural bias if possible.\",\"PeriodicalId\":425645,\"journal\":{\"name\":\"Symposium on Combinatorial Search\",\"volume\":\"24 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-07-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Symposium on Combinatorial Search\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1609/socs.v16i1.27311\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Symposium on Combinatorial Search","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1609/socs.v16i1.27311","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

在这项工作中,我们考虑了一些快速启发式搜索方法引入结构偏差的可能性,这可能导致类似于下游统计学习方法的抽样偏差的问题。我们试图了解这种偏见的根源,并开发有效的替代方案。在这里,我们提出了一些初步的结果,开发了一个正则a *的变体,可以克服由先入先出重复检测引入的结构偏差,这是我们在变量启发式误差条件下观察到的。这些结果启发了在令人满意的情况下对这个问题进行贪婪-最佳-优先搜索的模型。我们希望将我们的方法应用于一种新的规划应用——基于主体的流行病学建模的活动选择——规划技术应尽可能避免引入结构偏差。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Structural Bias in Heuristic Search (Student Abstract)
In this line of work, we consider the possibility that some fast heuristic search methods introduce structural bias, which can cause problems similar to sampling-bias for downstream statistical learning methods. We seek to understand the source of this kind of bias and to develop efficient alternatives. Here we present some preliminary results in developing a variation of canonical A* that can overcome the structural bias introduced by first-in-first-out duplicate detection, which we observed under the condition of variable heuristic error. These results inspire a model of greedy-best-first-search for this problem in the satisficing setting. We hope to apply our approach in a novel planning application--activity selection for agent-based modeling for epidemiology--where planning technology should avoid introducing structural bias if possible.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信