模糊最小-最大神经网络对分类任务的评价

P. Sadeghian, Aspen Olmsted
{"title":"模糊最小-最大神经网络对分类任务的评价","authors":"P. Sadeghian, Aspen Olmsted","doi":"10.23919/ICITST.2017.8356376","DOIUrl":null,"url":null,"abstract":"Statistical methods have been used in order to classify data from random samples. Generally, if we know the statistical distribution of the data, we can utilize specific classifiers designed for that distribution and anticipate good results. This work assesses the accuracy of Fuzzy Min-Max Neural Network (FMM) and Enhanced Fuzzy Min-Max Neural Network (EFMM) classifiers in classification tasks using data from five different statistical distributions: Negative Binomial, Logistic, Log-Normal, Gamma, and Weibull. Results of the assessment are provided and show different accuracies based on the statistical distribution of the data. This study presents a novel approach to the classification of statistical distributions by presenting two classifiers, namely FMM and EFMM Neural Networks, capable of classifying the above statistical distributions.","PeriodicalId":440665,"journal":{"name":"2017 12th International Conference for Internet Technology and Secured Transactions (ICITST)","volume":"19 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Assessment of fuzzy min-max neural networks for classification tasks\",\"authors\":\"P. Sadeghian, Aspen Olmsted\",\"doi\":\"10.23919/ICITST.2017.8356376\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Statistical methods have been used in order to classify data from random samples. Generally, if we know the statistical distribution of the data, we can utilize specific classifiers designed for that distribution and anticipate good results. This work assesses the accuracy of Fuzzy Min-Max Neural Network (FMM) and Enhanced Fuzzy Min-Max Neural Network (EFMM) classifiers in classification tasks using data from five different statistical distributions: Negative Binomial, Logistic, Log-Normal, Gamma, and Weibull. Results of the assessment are provided and show different accuracies based on the statistical distribution of the data. This study presents a novel approach to the classification of statistical distributions by presenting two classifiers, namely FMM and EFMM Neural Networks, capable of classifying the above statistical distributions.\",\"PeriodicalId\":440665,\"journal\":{\"name\":\"2017 12th International Conference for Internet Technology and Secured Transactions (ICITST)\",\"volume\":\"19 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2017 12th International Conference for Internet Technology and Secured Transactions (ICITST)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.23919/ICITST.2017.8356376\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 12th International Conference for Internet Technology and Secured Transactions (ICITST)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.23919/ICITST.2017.8356376","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

为了从随机样本中对数据进行分类,已经使用了统计方法。一般来说,如果我们知道数据的统计分布,我们可以利用为该分布设计的特定分类器,并预期良好的结果。这项工作评估了模糊最小-最大神经网络(FMM)和增强模糊最小-最大神经网络(EFMM)分类器在分类任务中的准确性,使用来自五种不同统计分布的数据:负二项分布、Logistic分布、对数正态分布、伽玛分布和威布尔分布。给出了评估结果,并根据数据的统计分布显示出不同的准确性。本研究提出了一种新的统计分布分类方法,通过提出两种分类器,即FMM和EFMM神经网络,能够对上述统计分布进行分类。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Assessment of fuzzy min-max neural networks for classification tasks
Statistical methods have been used in order to classify data from random samples. Generally, if we know the statistical distribution of the data, we can utilize specific classifiers designed for that distribution and anticipate good results. This work assesses the accuracy of Fuzzy Min-Max Neural Network (FMM) and Enhanced Fuzzy Min-Max Neural Network (EFMM) classifiers in classification tasks using data from five different statistical distributions: Negative Binomial, Logistic, Log-Normal, Gamma, and Weibull. Results of the assessment are provided and show different accuracies based on the statistical distribution of the data. This study presents a novel approach to the classification of statistical distributions by presenting two classifiers, namely FMM and EFMM Neural Networks, capable of classifying the above statistical distributions.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信