Songbek Che, S. Nagai, N. Negoro, Yasufumi Kawai, O. Tabata, S. Enomoto, Y. Anda, T. Hatsuda
{"title":"用于1.0 MHz GaN电源系统的A1W功耗GaN隔离栅驱动器","authors":"Songbek Che, S. Nagai, N. Negoro, Yasufumi Kawai, O. Tabata, S. Enomoto, Y. Anda, T. Hatsuda","doi":"10.23919/ISPSD.2017.7988876","DOIUrl":null,"url":null,"abstract":"Fast switching operation of power electronics systems is significantly advantageous for reducing volume of passive components and increasing power density in the systems. Next generation power devices, such as GaN gate-injection transistor (GIT), are promising for high frequency operations and isolated gate driving is also highly recommended owing to its noise robustness. In this paper, we propose a GaN Hetero Junction Field-Effect Transistor (HFET)-based isolated gate driver for GaN power devices with Drive-by-Microwave (DBM) technology, which can provide very compact GaN-GIT power systems owing to a gate driving by a wireless power transfer without an additional isolated voltage source. The proposed DBM gate driver can drive GaN-GIT power devices at a high switching frequency of 3 MHz with relatively low power consumption (∼1 W) and provides a short propagation delay less than 20 nsec.","PeriodicalId":202561,"journal":{"name":"2017 29th International Symposium on Power Semiconductor Devices and IC's (ISPSD)","volume":"111 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"A1W power consumption GaN-based isolated gate driver for a 1.0 MHz GaN power system\",\"authors\":\"Songbek Che, S. Nagai, N. Negoro, Yasufumi Kawai, O. Tabata, S. Enomoto, Y. Anda, T. Hatsuda\",\"doi\":\"10.23919/ISPSD.2017.7988876\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Fast switching operation of power electronics systems is significantly advantageous for reducing volume of passive components and increasing power density in the systems. Next generation power devices, such as GaN gate-injection transistor (GIT), are promising for high frequency operations and isolated gate driving is also highly recommended owing to its noise robustness. In this paper, we propose a GaN Hetero Junction Field-Effect Transistor (HFET)-based isolated gate driver for GaN power devices with Drive-by-Microwave (DBM) technology, which can provide very compact GaN-GIT power systems owing to a gate driving by a wireless power transfer without an additional isolated voltage source. The proposed DBM gate driver can drive GaN-GIT power devices at a high switching frequency of 3 MHz with relatively low power consumption (∼1 W) and provides a short propagation delay less than 20 nsec.\",\"PeriodicalId\":202561,\"journal\":{\"name\":\"2017 29th International Symposium on Power Semiconductor Devices and IC's (ISPSD)\",\"volume\":\"111 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-05-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2017 29th International Symposium on Power Semiconductor Devices and IC's (ISPSD)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.23919/ISPSD.2017.7988876\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 29th International Symposium on Power Semiconductor Devices and IC's (ISPSD)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.23919/ISPSD.2017.7988876","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
A1W power consumption GaN-based isolated gate driver for a 1.0 MHz GaN power system
Fast switching operation of power electronics systems is significantly advantageous for reducing volume of passive components and increasing power density in the systems. Next generation power devices, such as GaN gate-injection transistor (GIT), are promising for high frequency operations and isolated gate driving is also highly recommended owing to its noise robustness. In this paper, we propose a GaN Hetero Junction Field-Effect Transistor (HFET)-based isolated gate driver for GaN power devices with Drive-by-Microwave (DBM) technology, which can provide very compact GaN-GIT power systems owing to a gate driving by a wireless power transfer without an additional isolated voltage source. The proposed DBM gate driver can drive GaN-GIT power devices at a high switching frequency of 3 MHz with relatively low power consumption (∼1 W) and provides a short propagation delay less than 20 nsec.