半环的同余扩展性质

Yun Zhao, Yuanlan Zhou, T. Zeng
{"title":"半环的同余扩展性质","authors":"Yun Zhao, Yuanlan Zhou, T. Zeng","doi":"10.12988/imf.2020.912103","DOIUrl":null,"url":null,"abstract":"In this paper, we defined the congruence extension property, biideal extension property for semirings and bi-ideal semirings. Relations among the various extensions are explored. Properties of bi-ideal semirings are studied. Also, we gave some examples that a bi-ideal semiring which has the bi-ideal extension property does not have the congruence extension property, a subsemiring of a bi-ideal semiring may not be a bi-ideal semiring, etc. Finally, a necessary and sufficient condition of a special rectangular ring with congruence extension property was established. Mathematics Subject Classification: 16Y60","PeriodicalId":107214,"journal":{"name":"International Mathematical Forum","volume":"17 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Congruence extension property for semirings\",\"authors\":\"Yun Zhao, Yuanlan Zhou, T. Zeng\",\"doi\":\"10.12988/imf.2020.912103\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we defined the congruence extension property, biideal extension property for semirings and bi-ideal semirings. Relations among the various extensions are explored. Properties of bi-ideal semirings are studied. Also, we gave some examples that a bi-ideal semiring which has the bi-ideal extension property does not have the congruence extension property, a subsemiring of a bi-ideal semiring may not be a bi-ideal semiring, etc. Finally, a necessary and sufficient condition of a special rectangular ring with congruence extension property was established. Mathematics Subject Classification: 16Y60\",\"PeriodicalId\":107214,\"journal\":{\"name\":\"International Mathematical Forum\",\"volume\":\"17 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1900-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Mathematical Forum\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.12988/imf.2020.912103\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Mathematical Forum","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.12988/imf.2020.912103","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文定义了半环的同余可拓性、双理想可拓性和双理想半环。探讨了各种扩展之间的关系。研究了双理想半环的性质。并给出了具有双理想可拓性的双理想半环不具有同余可拓性,双理想半环的子半环不一定是双理想半环等例子。最后,给出了具有同余扩展性质的特殊矩形环的一个充分必要条件。数学学科分类:16Y60
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Congruence extension property for semirings
In this paper, we defined the congruence extension property, biideal extension property for semirings and bi-ideal semirings. Relations among the various extensions are explored. Properties of bi-ideal semirings are studied. Also, we gave some examples that a bi-ideal semiring which has the bi-ideal extension property does not have the congruence extension property, a subsemiring of a bi-ideal semiring may not be a bi-ideal semiring, etc. Finally, a necessary and sufficient condition of a special rectangular ring with congruence extension property was established. Mathematics Subject Classification: 16Y60
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信