基于迭代法和梯形求积规则的非线性模糊Urysohn-Volterra延迟积分方程数值解

R. Ezzati, A. M. Gholam, H. Nouriani
{"title":"基于迭代法和梯形求积规则的非线性模糊Urysohn-Volterra延迟积分方程数值解","authors":"R. Ezzati, A. M. Gholam, H. Nouriani","doi":"10.1109/CFIS49607.2020.9238670","DOIUrl":null,"url":null,"abstract":"In the present study, in the beginning, we prove the existence and uniqueness of the solution of nonlinear fuzzy Urysohn-Volterra delay integral equations (NFUVDIE). Then, we propose an iterative method and trapezoidal quadrature rule which numerically solve this equation. In addition, we prove the convergence analysis and error estimate of the proposed numerical method by theorem 3. Eventually, we conclude the efficiency of the presented method. Notice that the study of this equation is important since they have broad applications in various engineering sciences. Recently, a number of researchers suggested variant numerical methods for solving of Volterra fuzzy delay integral equations.","PeriodicalId":128323,"journal":{"name":"2020 8th Iranian Joint Congress on Fuzzy and intelligent Systems (CFIS)","volume":"40 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"On numerical solution of nonlinear fuzzy Urysohn-Volterra delay integral equations based on iterative method and trapezoidal quadrature rule\",\"authors\":\"R. Ezzati, A. M. Gholam, H. Nouriani\",\"doi\":\"10.1109/CFIS49607.2020.9238670\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In the present study, in the beginning, we prove the existence and uniqueness of the solution of nonlinear fuzzy Urysohn-Volterra delay integral equations (NFUVDIE). Then, we propose an iterative method and trapezoidal quadrature rule which numerically solve this equation. In addition, we prove the convergence analysis and error estimate of the proposed numerical method by theorem 3. Eventually, we conclude the efficiency of the presented method. Notice that the study of this equation is important since they have broad applications in various engineering sciences. Recently, a number of researchers suggested variant numerical methods for solving of Volterra fuzzy delay integral equations.\",\"PeriodicalId\":128323,\"journal\":{\"name\":\"2020 8th Iranian Joint Congress on Fuzzy and intelligent Systems (CFIS)\",\"volume\":\"40 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2020 8th Iranian Joint Congress on Fuzzy and intelligent Systems (CFIS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CFIS49607.2020.9238670\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 8th Iranian Joint Congress on Fuzzy and intelligent Systems (CFIS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CFIS49607.2020.9238670","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文首先证明了一类非线性模糊Urysohn-Volterra时滞积分方程(NFUVDIE)解的存在唯一性。在此基础上,提出了数值求解该方程的迭代法和梯形求积规则。此外,利用定理3证明了所提数值方法的收敛性分析和误差估计。最后,我们总结了该方法的有效性。注意,研究这个方程是很重要的,因为它在各种工程科学中有广泛的应用。近年来,一些学者提出了求解Volterra模糊时滞积分方程的变数值方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
On numerical solution of nonlinear fuzzy Urysohn-Volterra delay integral equations based on iterative method and trapezoidal quadrature rule
In the present study, in the beginning, we prove the existence and uniqueness of the solution of nonlinear fuzzy Urysohn-Volterra delay integral equations (NFUVDIE). Then, we propose an iterative method and trapezoidal quadrature rule which numerically solve this equation. In addition, we prove the convergence analysis and error estimate of the proposed numerical method by theorem 3. Eventually, we conclude the efficiency of the presented method. Notice that the study of this equation is important since they have broad applications in various engineering sciences. Recently, a number of researchers suggested variant numerical methods for solving of Volterra fuzzy delay integral equations.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信