{"title":"NK-Kauffman网络生成的不同二值函数的数量与遗传鲁棒性的出现","authors":"D. Romero, F. Zertuche","doi":"10.1063/1.2768747","DOIUrl":null,"url":null,"abstract":"We determine the average number $ \\vartheta (N, K) $, of \\textit{NK}-Kauffman networks that give rise to the same binary function. We show that, for $ N \\gg 1 $, there exists a connectivity critical value $ K_c $ such that $ \\vartheta(N,K) \\approx e^{\\phi N} $ ($ \\phi > 0 $) for $ K K_c $. We find that $ K_c $ is not a constant, but scales very slowly with $ N $, as $ K_c \\approx \\log_2 \\log_2 (2N / \\ln 2) $. The problem of genetic robustness emerges as a statistical property of the ensemble of \\textit{NK}-Kauffman networks and impose tight constraints in the average number of epistatic interactions that the genotype-phenotype map can have.","PeriodicalId":139082,"journal":{"name":"arXiv: Adaptation and Self-Organizing Systems","volume":"42 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2007-08-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":"{\"title\":\"The Number of Different Binary Functions Generated by NK-Kauffman Networks and the Emergence of Genetic Robustness\",\"authors\":\"D. Romero, F. Zertuche\",\"doi\":\"10.1063/1.2768747\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We determine the average number $ \\\\vartheta (N, K) $, of \\\\textit{NK}-Kauffman networks that give rise to the same binary function. We show that, for $ N \\\\gg 1 $, there exists a connectivity critical value $ K_c $ such that $ \\\\vartheta(N,K) \\\\approx e^{\\\\phi N} $ ($ \\\\phi > 0 $) for $ K K_c $. We find that $ K_c $ is not a constant, but scales very slowly with $ N $, as $ K_c \\\\approx \\\\log_2 \\\\log_2 (2N / \\\\ln 2) $. The problem of genetic robustness emerges as a statistical property of the ensemble of \\\\textit{NK}-Kauffman networks and impose tight constraints in the average number of epistatic interactions that the genotype-phenotype map can have.\",\"PeriodicalId\":139082,\"journal\":{\"name\":\"arXiv: Adaptation and Self-Organizing Systems\",\"volume\":\"42 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2007-08-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"7\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv: Adaptation and Self-Organizing Systems\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1063/1.2768747\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv: Adaptation and Self-Organizing Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1063/1.2768747","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
The Number of Different Binary Functions Generated by NK-Kauffman Networks and the Emergence of Genetic Robustness
We determine the average number $ \vartheta (N, K) $, of \textit{NK}-Kauffman networks that give rise to the same binary function. We show that, for $ N \gg 1 $, there exists a connectivity critical value $ K_c $ such that $ \vartheta(N,K) \approx e^{\phi N} $ ($ \phi > 0 $) for $ K K_c $. We find that $ K_c $ is not a constant, but scales very slowly with $ N $, as $ K_c \approx \log_2 \log_2 (2N / \ln 2) $. The problem of genetic robustness emerges as a statistical property of the ensemble of \textit{NK}-Kauffman networks and impose tight constraints in the average number of epistatic interactions that the genotype-phenotype map can have.