图像跟踪:视频中物体的鲁棒检测和跟踪

Hannes Fassold
{"title":"图像跟踪:视频中物体的鲁棒检测和跟踪","authors":"Hannes Fassold","doi":"10.1109/ICMEW56448.2022.9859437","DOIUrl":null,"url":null,"abstract":"The automatic detection and tracking of objects in a video is crucial for many video understanding tasks. We propose a novel deep learning based algorithm for object detection and tracking, which is able to detect more than 1,000 object classes and tracks them robustly, even for challenging content. The robustness of the tracking is due to the usage of optical flow information. Additionally, we utilize only the part of the bounding box corresponding to the object shape for the tracking.","PeriodicalId":106759,"journal":{"name":"2022 IEEE International Conference on Multimedia and Expo Workshops (ICMEW)","volume":"76 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-07-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Detic-Track: Robust Detection and Tracking of Objects in Video\",\"authors\":\"Hannes Fassold\",\"doi\":\"10.1109/ICMEW56448.2022.9859437\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The automatic detection and tracking of objects in a video is crucial for many video understanding tasks. We propose a novel deep learning based algorithm for object detection and tracking, which is able to detect more than 1,000 object classes and tracks them robustly, even for challenging content. The robustness of the tracking is due to the usage of optical flow information. Additionally, we utilize only the part of the bounding box corresponding to the object shape for the tracking.\",\"PeriodicalId\":106759,\"journal\":{\"name\":\"2022 IEEE International Conference on Multimedia and Expo Workshops (ICMEW)\",\"volume\":\"76 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-07-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2022 IEEE International Conference on Multimedia and Expo Workshops (ICMEW)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICMEW56448.2022.9859437\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 IEEE International Conference on Multimedia and Expo Workshops (ICMEW)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICMEW56448.2022.9859437","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

视频中物体的自动检测和跟踪对于许多视频理解任务至关重要。我们提出了一种新的基于深度学习的对象检测和跟踪算法,它能够检测超过1000个对象类并对它们进行鲁棒跟踪,即使是具有挑战性的内容。跟踪的鲁棒性是由于利用了光流信息。此外,我们只利用与物体形状相对应的边界框部分进行跟踪。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Detic-Track: Robust Detection and Tracking of Objects in Video
The automatic detection and tracking of objects in a video is crucial for many video understanding tasks. We propose a novel deep learning based algorithm for object detection and tracking, which is able to detect more than 1,000 object classes and tracks them robustly, even for challenging content. The robustness of the tracking is due to the usage of optical flow information. Additionally, we utilize only the part of the bounding box corresponding to the object shape for the tracking.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信