曲率

A. Steane
{"title":"曲率","authors":"A. Steane","doi":"10.1093/oso/9780192895646.003.0015","DOIUrl":null,"url":null,"abstract":"The mathematics of Riemannian curvature is presented. The Riemann curvature tensor and its role in parallel transport, in the metric, and in geodesic deviation are expounded at length. We begin by defining the curvature tensor and the torsion tensor by relating them to covariant derivatives. Then the local metric is obtained up to second order in terms of Minkowski metric and curvature tensor. Geometric issues such as the closure or non-closure of parallelograms are discussed. Next, the relation between curvature and parallel transport around a loop is derived. Then we proceed to geodesic deviation. The influence of global properties of the manifold on parallel transport is briefly expounded. The Lie derivative is then defined, and isometries of spacetime are discussed. Killing’s equation and properties of Killing vectors are obtained. Finally, the Weyl tensor (conformal tensor) is introduced.","PeriodicalId":365636,"journal":{"name":"Relativity Made Relatively Easy Volume 2","volume":"30 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-11-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Curvature\",\"authors\":\"A. Steane\",\"doi\":\"10.1093/oso/9780192895646.003.0015\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The mathematics of Riemannian curvature is presented. The Riemann curvature tensor and its role in parallel transport, in the metric, and in geodesic deviation are expounded at length. We begin by defining the curvature tensor and the torsion tensor by relating them to covariant derivatives. Then the local metric is obtained up to second order in terms of Minkowski metric and curvature tensor. Geometric issues such as the closure or non-closure of parallelograms are discussed. Next, the relation between curvature and parallel transport around a loop is derived. Then we proceed to geodesic deviation. The influence of global properties of the manifold on parallel transport is briefly expounded. The Lie derivative is then defined, and isometries of spacetime are discussed. Killing’s equation and properties of Killing vectors are obtained. Finally, the Weyl tensor (conformal tensor) is introduced.\",\"PeriodicalId\":365636,\"journal\":{\"name\":\"Relativity Made Relatively Easy Volume 2\",\"volume\":\"30 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-11-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Relativity Made Relatively Easy Volume 2\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1093/oso/9780192895646.003.0015\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Relativity Made Relatively Easy Volume 2","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1093/oso/9780192895646.003.0015","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

介绍了黎曼曲率的数学性质。详细阐述了黎曼曲率张量及其在平行移动、度规和测地线偏差中的作用。我们首先定义曲率张量和扭转张量通过将它们与协变导数联系起来。然后用闵可夫斯基度规和曲率张量的形式得到二阶局部度规。讨论了平行四边形的闭包或不闭包等几何问题。其次,推导了曲率与绕环平行移动的关系。然后我们进行测地线偏差。简要阐述了流形整体性质对平行输运的影响。然后定义了李导,并讨论了时空的等距。得到了杀戮方程和杀戮向量的性质。最后,介绍了Weyl张量(共形张量)。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Curvature
The mathematics of Riemannian curvature is presented. The Riemann curvature tensor and its role in parallel transport, in the metric, and in geodesic deviation are expounded at length. We begin by defining the curvature tensor and the torsion tensor by relating them to covariant derivatives. Then the local metric is obtained up to second order in terms of Minkowski metric and curvature tensor. Geometric issues such as the closure or non-closure of parallelograms are discussed. Next, the relation between curvature and parallel transport around a loop is derived. Then we proceed to geodesic deviation. The influence of global properties of the manifold on parallel transport is briefly expounded. The Lie derivative is then defined, and isometries of spacetime are discussed. Killing’s equation and properties of Killing vectors are obtained. Finally, the Weyl tensor (conformal tensor) is introduced.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信