{"title":"机器学习金属有机框架的带隙","authors":"S. Savelyev, K. Mitrofanov, Artem Karpov","doi":"10.29003/m2478.mmmsec-2021/84-86","DOIUrl":null,"url":null,"abstract":"This work presents building and study of physico-chemically interpretable machine learning models fit for metal-organic frameworks’ band gap prediction.","PeriodicalId":151453,"journal":{"name":"Mathematical modeling in materials science of electronic component","volume":"42 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-10-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"MACHINE LEARNING THE BAND GAP OF METAL-ORGANIC FRAMEWORKS\",\"authors\":\"S. Savelyev, K. Mitrofanov, Artem Karpov\",\"doi\":\"10.29003/m2478.mmmsec-2021/84-86\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This work presents building and study of physico-chemically interpretable machine learning models fit for metal-organic frameworks’ band gap prediction.\",\"PeriodicalId\":151453,\"journal\":{\"name\":\"Mathematical modeling in materials science of electronic component\",\"volume\":\"42 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-10-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Mathematical modeling in materials science of electronic component\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.29003/m2478.mmmsec-2021/84-86\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mathematical modeling in materials science of electronic component","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.29003/m2478.mmmsec-2021/84-86","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
MACHINE LEARNING THE BAND GAP OF METAL-ORGANIC FRAMEWORKS
This work presents building and study of physico-chemically interpretable machine learning models fit for metal-organic frameworks’ band gap prediction.