通过柱采样的时间和空间有效的光谱聚类

Mu Li, Xiao-Chen Lian, J. Kwok, Bao-Liang Lu
{"title":"通过柱采样的时间和空间有效的光谱聚类","authors":"Mu Li, Xiao-Chen Lian, J. Kwok, Bao-Liang Lu","doi":"10.1109/CVPR.2011.5995425","DOIUrl":null,"url":null,"abstract":"Spectral clustering is an elegant and powerful approach for clustering. However, the underlying eigen-decomposition takes cubic time and quadratic space w.r.t. the data set size. These can be reduced by the Nyström method which samples only a subset of columns from the matrix. However, the manipulation and storage of these sampled columns can still be expensive when the data set is large. In this paper, we propose a time- and space-efficient spectral clustering algorithm which can scale to very large data sets. A general procedure to orthogonalize the approximated eigenvectors is also proposed. Extensive spectral clustering experiments on a number of data sets, ranging in size from a few thousands to several millions, demonstrate the accuracy and scalability of the proposed approach. We further apply it to the task of image segmentation. For images with more than 10 millions pixels, this algorithm can obtain the eigenvectors in 1 minute on a single machine.","PeriodicalId":445398,"journal":{"name":"CVPR 2011","volume":"23 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2011-06-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"72","resultStr":"{\"title\":\"Time and space efficient spectral clustering via column sampling\",\"authors\":\"Mu Li, Xiao-Chen Lian, J. Kwok, Bao-Liang Lu\",\"doi\":\"10.1109/CVPR.2011.5995425\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Spectral clustering is an elegant and powerful approach for clustering. However, the underlying eigen-decomposition takes cubic time and quadratic space w.r.t. the data set size. These can be reduced by the Nyström method which samples only a subset of columns from the matrix. However, the manipulation and storage of these sampled columns can still be expensive when the data set is large. In this paper, we propose a time- and space-efficient spectral clustering algorithm which can scale to very large data sets. A general procedure to orthogonalize the approximated eigenvectors is also proposed. Extensive spectral clustering experiments on a number of data sets, ranging in size from a few thousands to several millions, demonstrate the accuracy and scalability of the proposed approach. We further apply it to the task of image segmentation. For images with more than 10 millions pixels, this algorithm can obtain the eigenvectors in 1 minute on a single machine.\",\"PeriodicalId\":445398,\"journal\":{\"name\":\"CVPR 2011\",\"volume\":\"23 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2011-06-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"72\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"CVPR 2011\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CVPR.2011.5995425\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"CVPR 2011","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CVPR.2011.5995425","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 72

摘要

谱聚类是一种优雅而强大的聚类方法。然而,底层特征分解需要三次时间和二次空间,而不是数据集的大小。这些可以通过Nyström方法减少,该方法只从矩阵中采样列的子集。然而,当数据集很大时,这些采样列的操作和存储仍然是昂贵的。在本文中,我们提出了一种时间和空间效率高的光谱聚类算法,它可以扩展到非常大的数据集。提出了一种逼近特征向量正交化的一般方法。在大量数据集(从几千到几百万不等)上进行了广泛的光谱聚类实验,证明了该方法的准确性和可扩展性。我们进一步将其应用于图像分割任务。对于1000万像素以上的图像,该算法可以在一台机器上1分钟内获得特征向量。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Time and space efficient spectral clustering via column sampling
Spectral clustering is an elegant and powerful approach for clustering. However, the underlying eigen-decomposition takes cubic time and quadratic space w.r.t. the data set size. These can be reduced by the Nyström method which samples only a subset of columns from the matrix. However, the manipulation and storage of these sampled columns can still be expensive when the data set is large. In this paper, we propose a time- and space-efficient spectral clustering algorithm which can scale to very large data sets. A general procedure to orthogonalize the approximated eigenvectors is also proposed. Extensive spectral clustering experiments on a number of data sets, ranging in size from a few thousands to several millions, demonstrate the accuracy and scalability of the proposed approach. We further apply it to the task of image segmentation. For images with more than 10 millions pixels, this algorithm can obtain the eigenvectors in 1 minute on a single machine.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信