关于t范数合并的完全剩余多值逻辑

F. Esteva, L. Godo
{"title":"关于t范数合并的完全剩余多值逻辑","authors":"F. Esteva, L. Godo","doi":"10.1109/ISMVL.2001.924558","DOIUrl":null,"url":null,"abstract":"In this paper we summarize recent results, both logical and algebraic, about [0,1]-valued logical systems having a t-norm and its residuum as truth functions for conjunction and implication. We describe their axiomatic systems and their algebraic varieties, and we stress that the most general variety generated by residuated structures in [0, 1] defined by (left-continuous) t-norms is the variety of pre-linear residuated lattices.","PeriodicalId":297353,"journal":{"name":"Proceedings 31st IEEE International Symposium on Multiple-Valued Logic","volume":"112 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2001-05-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"13","resultStr":"{\"title\":\"On complete residuated many-valued logics with t-norm conjunction\",\"authors\":\"F. Esteva, L. Godo\",\"doi\":\"10.1109/ISMVL.2001.924558\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper we summarize recent results, both logical and algebraic, about [0,1]-valued logical systems having a t-norm and its residuum as truth functions for conjunction and implication. We describe their axiomatic systems and their algebraic varieties, and we stress that the most general variety generated by residuated structures in [0, 1] defined by (left-continuous) t-norms is the variety of pre-linear residuated lattices.\",\"PeriodicalId\":297353,\"journal\":{\"name\":\"Proceedings 31st IEEE International Symposium on Multiple-Valued Logic\",\"volume\":\"112 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2001-05-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"13\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings 31st IEEE International Symposium on Multiple-Valued Logic\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ISMVL.2001.924558\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings 31st IEEE International Symposium on Multiple-Valued Logic","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISMVL.2001.924558","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 13

摘要

本文总结了近年来关于具有t-范数及其残差的[0,1]值逻辑系统的逻辑和代数结果,这些结果作为合取和蕴涵的真值函数。我们描述了它们的公理系统及其代数变体,并强调由(左连续)t-范数定义的[0,1]中剩余结构产生的最一般的变体是预线性剩余格的变体。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
On complete residuated many-valued logics with t-norm conjunction
In this paper we summarize recent results, both logical and algebraic, about [0,1]-valued logical systems having a t-norm and its residuum as truth functions for conjunction and implication. We describe their axiomatic systems and their algebraic varieties, and we stress that the most general variety generated by residuated structures in [0, 1] defined by (left-continuous) t-norms is the variety of pre-linear residuated lattices.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信