基于航线的船舶入级

Shoichi Ichimura, Qiangfu Zhao
{"title":"基于航线的船舶入级","authors":"Shoichi Ichimura, Qiangfu Zhao","doi":"10.1109/ICAwST.2019.8923540","DOIUrl":null,"url":null,"abstract":"In recent years, the traffic volume on the sea has increased significantly. Compared with road traffic management, sea traffic management is very difficult due to many reasons. For safety sailing, automatic identification system (AIS) has been introduced. Using AIS signals, it is possible to understand the position, velocity, and other information of each sea-going ship, and thus can detect possible dangers and provide necessary rescue promptly. However, some ship owners may not set their AIS correctly, and thus the AIS signals may not be trustable. The purpose of this study is to propose a method to classify the true ship type using the AIS signal and provide a way to support traffic management. Specifically, we extract the \"signature characteristics\" of the ship from its AIS signal, and then classify the ship type using a machine learning model. Primary experimental results show that the average accuracy is about 87.3% if we use a multilayer perceptron. Better results are expected if we use more data.","PeriodicalId":156538,"journal":{"name":"2019 IEEE 10th International Conference on Awareness Science and Technology (iCAST)","volume":"80 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":"{\"title\":\"Route-Based Ship Classification\",\"authors\":\"Shoichi Ichimura, Qiangfu Zhao\",\"doi\":\"10.1109/ICAwST.2019.8923540\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In recent years, the traffic volume on the sea has increased significantly. Compared with road traffic management, sea traffic management is very difficult due to many reasons. For safety sailing, automatic identification system (AIS) has been introduced. Using AIS signals, it is possible to understand the position, velocity, and other information of each sea-going ship, and thus can detect possible dangers and provide necessary rescue promptly. However, some ship owners may not set their AIS correctly, and thus the AIS signals may not be trustable. The purpose of this study is to propose a method to classify the true ship type using the AIS signal and provide a way to support traffic management. Specifically, we extract the \\\"signature characteristics\\\" of the ship from its AIS signal, and then classify the ship type using a machine learning model. Primary experimental results show that the average accuracy is about 87.3% if we use a multilayer perceptron. Better results are expected if we use more data.\",\"PeriodicalId\":156538,\"journal\":{\"name\":\"2019 IEEE 10th International Conference on Awareness Science and Technology (iCAST)\",\"volume\":\"80 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"6\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2019 IEEE 10th International Conference on Awareness Science and Technology (iCAST)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICAwST.2019.8923540\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 IEEE 10th International Conference on Awareness Science and Technology (iCAST)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICAwST.2019.8923540","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

摘要

近年来,海上交通量有了显著的增长。与道路交通管理相比,海上交通管理由于种种原因,难度很大。为了安全航行,引入了自动识别系统(AIS)。利用AIS信号,可以了解每艘海船的位置、航速等信息,从而及时发现可能存在的危险并提供必要的救援。然而,有些船东可能没有正确设置AIS系统,因此AIS信号可能不可靠。本研究的目的是提出一种利用AIS信号对真实船型进行分类的方法,为交通管理提供一种支持方法。具体来说,我们从AIS信号中提取船舶的“签名特征”,然后使用机器学习模型对船型进行分类。初步实验结果表明,多层感知器的平均准确率约为87.3%。如果我们使用更多的数据,预期会有更好的结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Route-Based Ship Classification
In recent years, the traffic volume on the sea has increased significantly. Compared with road traffic management, sea traffic management is very difficult due to many reasons. For safety sailing, automatic identification system (AIS) has been introduced. Using AIS signals, it is possible to understand the position, velocity, and other information of each sea-going ship, and thus can detect possible dangers and provide necessary rescue promptly. However, some ship owners may not set their AIS correctly, and thus the AIS signals may not be trustable. The purpose of this study is to propose a method to classify the true ship type using the AIS signal and provide a way to support traffic management. Specifically, we extract the "signature characteristics" of the ship from its AIS signal, and then classify the ship type using a machine learning model. Primary experimental results show that the average accuracy is about 87.3% if we use a multilayer perceptron. Better results are expected if we use more data.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信