一个基于内容的系统,用于音乐推荐和用户偏好的可视化,处理语义概念

D. Bogdanov, Martín Haro, Ferdinand Fuhrmann, Anna Xambó, E. Gómez, P. Herrera
{"title":"一个基于内容的系统,用于音乐推荐和用户偏好的可视化,处理语义概念","authors":"D. Bogdanov, Martín Haro, Ferdinand Fuhrmann, Anna Xambó, E. Gómez, P. Herrera","doi":"10.1109/CBMI.2011.5972554","DOIUrl":null,"url":null,"abstract":"The amount of digital music has grown unprecedentedly during the last years and requires the development of effective methods for search and retrieval. In particular, content-based preference elicitation for music recommendation is a challenging problem that is effectively addressed in this paper. We present a system which automatically generates recommendations and visualizes a user's musical preferences, given her/his accounts on popular online music services. Using these services, the system retrieves a set of tracks preferred by a user, and further computes a semantic description of musical preferences based on raw audio information. For the audio analysis we used the capabilities of the Canoris API. Thereafter, the system generates music recommendations, using a semantic music similarity measure, and a user's preference visualization, mapping semantic descriptors to visual elements.","PeriodicalId":358337,"journal":{"name":"2011 9th International Workshop on Content-Based Multimedia Indexing (CBMI)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2011-06-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"16","resultStr":"{\"title\":\"A content-based system for music recommendation and visualization of user preferences working on semantic notions\",\"authors\":\"D. Bogdanov, Martín Haro, Ferdinand Fuhrmann, Anna Xambó, E. Gómez, P. Herrera\",\"doi\":\"10.1109/CBMI.2011.5972554\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The amount of digital music has grown unprecedentedly during the last years and requires the development of effective methods for search and retrieval. In particular, content-based preference elicitation for music recommendation is a challenging problem that is effectively addressed in this paper. We present a system which automatically generates recommendations and visualizes a user's musical preferences, given her/his accounts on popular online music services. Using these services, the system retrieves a set of tracks preferred by a user, and further computes a semantic description of musical preferences based on raw audio information. For the audio analysis we used the capabilities of the Canoris API. Thereafter, the system generates music recommendations, using a semantic music similarity measure, and a user's preference visualization, mapping semantic descriptors to visual elements.\",\"PeriodicalId\":358337,\"journal\":{\"name\":\"2011 9th International Workshop on Content-Based Multimedia Indexing (CBMI)\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2011-06-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"16\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2011 9th International Workshop on Content-Based Multimedia Indexing (CBMI)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CBMI.2011.5972554\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2011 9th International Workshop on Content-Based Multimedia Indexing (CBMI)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CBMI.2011.5972554","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 16

摘要

在过去的几年里,数字音乐的数量以前所未有的速度增长,需要开发有效的搜索和检索方法。特别是,基于内容的音乐推荐偏好激发是一个具有挑战性的问题,本文有效地解决了这一问题。我们提出了一个系统,自动生成推荐和可视化用户的音乐偏好,给她/他的帐户在流行的在线音乐服务。使用这些服务,系统检索用户喜欢的一组曲目,并进一步计算基于原始音频信息的音乐偏好的语义描述。对于音频分析,我们使用了Canoris API的功能。然后,系统使用语义音乐相似度度量和用户偏好可视化,将语义描述符映射到视觉元素,生成音乐推荐。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A content-based system for music recommendation and visualization of user preferences working on semantic notions
The amount of digital music has grown unprecedentedly during the last years and requires the development of effective methods for search and retrieval. In particular, content-based preference elicitation for music recommendation is a challenging problem that is effectively addressed in this paper. We present a system which automatically generates recommendations and visualizes a user's musical preferences, given her/his accounts on popular online music services. Using these services, the system retrieves a set of tracks preferred by a user, and further computes a semantic description of musical preferences based on raw audio information. For the audio analysis we used the capabilities of the Canoris API. Thereafter, the system generates music recommendations, using a semantic music similarity measure, and a user's preference visualization, mapping semantic descriptors to visual elements.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信