D. Bogdanov, Martín Haro, Ferdinand Fuhrmann, Anna Xambó, E. Gómez, P. Herrera
{"title":"一个基于内容的系统,用于音乐推荐和用户偏好的可视化,处理语义概念","authors":"D. Bogdanov, Martín Haro, Ferdinand Fuhrmann, Anna Xambó, E. Gómez, P. Herrera","doi":"10.1109/CBMI.2011.5972554","DOIUrl":null,"url":null,"abstract":"The amount of digital music has grown unprecedentedly during the last years and requires the development of effective methods for search and retrieval. In particular, content-based preference elicitation for music recommendation is a challenging problem that is effectively addressed in this paper. We present a system which automatically generates recommendations and visualizes a user's musical preferences, given her/his accounts on popular online music services. Using these services, the system retrieves a set of tracks preferred by a user, and further computes a semantic description of musical preferences based on raw audio information. For the audio analysis we used the capabilities of the Canoris API. Thereafter, the system generates music recommendations, using a semantic music similarity measure, and a user's preference visualization, mapping semantic descriptors to visual elements.","PeriodicalId":358337,"journal":{"name":"2011 9th International Workshop on Content-Based Multimedia Indexing (CBMI)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2011-06-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"16","resultStr":"{\"title\":\"A content-based system for music recommendation and visualization of user preferences working on semantic notions\",\"authors\":\"D. Bogdanov, Martín Haro, Ferdinand Fuhrmann, Anna Xambó, E. Gómez, P. Herrera\",\"doi\":\"10.1109/CBMI.2011.5972554\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The amount of digital music has grown unprecedentedly during the last years and requires the development of effective methods for search and retrieval. In particular, content-based preference elicitation for music recommendation is a challenging problem that is effectively addressed in this paper. We present a system which automatically generates recommendations and visualizes a user's musical preferences, given her/his accounts on popular online music services. Using these services, the system retrieves a set of tracks preferred by a user, and further computes a semantic description of musical preferences based on raw audio information. For the audio analysis we used the capabilities of the Canoris API. Thereafter, the system generates music recommendations, using a semantic music similarity measure, and a user's preference visualization, mapping semantic descriptors to visual elements.\",\"PeriodicalId\":358337,\"journal\":{\"name\":\"2011 9th International Workshop on Content-Based Multimedia Indexing (CBMI)\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2011-06-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"16\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2011 9th International Workshop on Content-Based Multimedia Indexing (CBMI)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CBMI.2011.5972554\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2011 9th International Workshop on Content-Based Multimedia Indexing (CBMI)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CBMI.2011.5972554","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
A content-based system for music recommendation and visualization of user preferences working on semantic notions
The amount of digital music has grown unprecedentedly during the last years and requires the development of effective methods for search and retrieval. In particular, content-based preference elicitation for music recommendation is a challenging problem that is effectively addressed in this paper. We present a system which automatically generates recommendations and visualizes a user's musical preferences, given her/his accounts on popular online music services. Using these services, the system retrieves a set of tracks preferred by a user, and further computes a semantic description of musical preferences based on raw audio information. For the audio analysis we used the capabilities of the Canoris API. Thereafter, the system generates music recommendations, using a semantic music similarity measure, and a user's preference visualization, mapping semantic descriptors to visual elements.