{"title":"自动数据结构生成:反驳常识","authors":"Kyle Dewey, L. Nichols, B. Hardekopf","doi":"10.1109/ICSE.2015.26","DOIUrl":null,"url":null,"abstract":"Common wisdom in the automated data structure generation community states that declarative techniques have better usability than imperative techniques, while imperative techniques have better performance. We show that this reasoning is fundamentally flawed: if we go to the declarative limit and employ constraint logic programming (CLP), the CLP data structure generation has orders of magnitude better performance than comparable imperative techniques. Conversely, we observe and argue that when it comes to realistically complex data structures and properties, the CLP specifications become more obscure, indirect, and difficult to implement and understand than their imperative counterparts. We empirically evaluate three competing generation techniques, CLP, Korat, and UDITA, to validate these observations on more complex and interesting data structures than any prior work in this area. We explain why these observations are true, and discuss possible techniques for attaining the best of both worlds.","PeriodicalId":330487,"journal":{"name":"2015 IEEE/ACM 37th IEEE International Conference on Software Engineering","volume":"77 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-05-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":"{\"title\":\"Automated Data Structure Generation: Refuting Common Wisdom\",\"authors\":\"Kyle Dewey, L. Nichols, B. Hardekopf\",\"doi\":\"10.1109/ICSE.2015.26\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Common wisdom in the automated data structure generation community states that declarative techniques have better usability than imperative techniques, while imperative techniques have better performance. We show that this reasoning is fundamentally flawed: if we go to the declarative limit and employ constraint logic programming (CLP), the CLP data structure generation has orders of magnitude better performance than comparable imperative techniques. Conversely, we observe and argue that when it comes to realistically complex data structures and properties, the CLP specifications become more obscure, indirect, and difficult to implement and understand than their imperative counterparts. We empirically evaluate three competing generation techniques, CLP, Korat, and UDITA, to validate these observations on more complex and interesting data structures than any prior work in this area. We explain why these observations are true, and discuss possible techniques for attaining the best of both worlds.\",\"PeriodicalId\":330487,\"journal\":{\"name\":\"2015 IEEE/ACM 37th IEEE International Conference on Software Engineering\",\"volume\":\"77 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2015-05-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"7\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2015 IEEE/ACM 37th IEEE International Conference on Software Engineering\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICSE.2015.26\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 IEEE/ACM 37th IEEE International Conference on Software Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICSE.2015.26","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Automated Data Structure Generation: Refuting Common Wisdom
Common wisdom in the automated data structure generation community states that declarative techniques have better usability than imperative techniques, while imperative techniques have better performance. We show that this reasoning is fundamentally flawed: if we go to the declarative limit and employ constraint logic programming (CLP), the CLP data structure generation has orders of magnitude better performance than comparable imperative techniques. Conversely, we observe and argue that when it comes to realistically complex data structures and properties, the CLP specifications become more obscure, indirect, and difficult to implement and understand than their imperative counterparts. We empirically evaluate three competing generation techniques, CLP, Korat, and UDITA, to validate these observations on more complex and interesting data structures than any prior work in this area. We explain why these observations are true, and discuss possible techniques for attaining the best of both worlds.