Madelyn:数据中心网络的多域多智能体强化学习

A. Kattepur, S. David
{"title":"Madelyn:数据中心网络的多域多智能体强化学习","authors":"A. Kattepur, S. David","doi":"10.1109/COMPSAC54236.2022.00109","DOIUrl":null,"url":null,"abstract":"Data-center network configurations are crucial in ensuring end-to-end differentiated service performance within 5G. Data-center networks encom-pass two domains: (i) the fat-tree networking fabric with leaf, spine and super-spine layers (ii) data-center server nodes with container and workload placement policies. These have traditionally been managed within silos with context and configurations driven within each domain. In this work, we examine the effect of configuration changes in one domain and its effect on the other. We develop Madelyn, a multi-domain multi-agent rein-forcement learning framework for data-center networks that can propose network-aware, virtual network function placement. This framework takes into account the data-center fabric wights, drop rates, capacities, load balancing and traffic shaping. It also considers the network function pod placements based on affinity / anti-affinity rules, node capacities and taints/tolerations. Using this multi-agent framework, we provide network aware scheduling policies for differentiated network function virtualization services running on Kubernetes pods within data-center networks. The results are demonstrated over a real traffic dataset collected over Ericsson's testbed networks.","PeriodicalId":330838,"journal":{"name":"2022 IEEE 46th Annual Computers, Software, and Applications Conference (COMPSAC)","volume":"42 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Madelyn: Multi-Domain Multi-Agent Reinforcement Learning for Data-center Networks\",\"authors\":\"A. Kattepur, S. David\",\"doi\":\"10.1109/COMPSAC54236.2022.00109\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Data-center network configurations are crucial in ensuring end-to-end differentiated service performance within 5G. Data-center networks encom-pass two domains: (i) the fat-tree networking fabric with leaf, spine and super-spine layers (ii) data-center server nodes with container and workload placement policies. These have traditionally been managed within silos with context and configurations driven within each domain. In this work, we examine the effect of configuration changes in one domain and its effect on the other. We develop Madelyn, a multi-domain multi-agent rein-forcement learning framework for data-center networks that can propose network-aware, virtual network function placement. This framework takes into account the data-center fabric wights, drop rates, capacities, load balancing and traffic shaping. It also considers the network function pod placements based on affinity / anti-affinity rules, node capacities and taints/tolerations. Using this multi-agent framework, we provide network aware scheduling policies for differentiated network function virtualization services running on Kubernetes pods within data-center networks. The results are demonstrated over a real traffic dataset collected over Ericsson's testbed networks.\",\"PeriodicalId\":330838,\"journal\":{\"name\":\"2022 IEEE 46th Annual Computers, Software, and Applications Conference (COMPSAC)\",\"volume\":\"42 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2022 IEEE 46th Annual Computers, Software, and Applications Conference (COMPSAC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/COMPSAC54236.2022.00109\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 IEEE 46th Annual Computers, Software, and Applications Conference (COMPSAC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/COMPSAC54236.2022.00109","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

数据中心网络配置对于确保5G的端到端差异化服务性能至关重要。数据中心网络包括两个领域:(i)具有叶子层、主干层和超级主干层的胖树网络结构(ii)具有容器和工作负载放置策略的数据中心服务器节点。这些传统上是在筒仓中管理的,在每个域中驱动上下文和配置。在这项工作中,我们研究了配置变化在一个领域的影响及其对另一个领域的影响。我们开发了Madelyn,一个用于数据中心网络的多域多智能体强化学习框架,可以提出网络感知,虚拟网络功能放置。该框架考虑了数据中心结构的重量、丢包率、容量、负载平衡和流量整形。它还考虑基于亲和/反亲和规则、节点容量和污点/公差的网络功能pod放置。使用这个多代理框架,我们为在数据中心网络中的Kubernetes pod上运行的差异化网络功能虚拟化服务提供网络感知调度策略。结果在爱立信测试平台网络上收集的真实流量数据集上得到了验证。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Madelyn: Multi-Domain Multi-Agent Reinforcement Learning for Data-center Networks
Data-center network configurations are crucial in ensuring end-to-end differentiated service performance within 5G. Data-center networks encom-pass two domains: (i) the fat-tree networking fabric with leaf, spine and super-spine layers (ii) data-center server nodes with container and workload placement policies. These have traditionally been managed within silos with context and configurations driven within each domain. In this work, we examine the effect of configuration changes in one domain and its effect on the other. We develop Madelyn, a multi-domain multi-agent rein-forcement learning framework for data-center networks that can propose network-aware, virtual network function placement. This framework takes into account the data-center fabric wights, drop rates, capacities, load balancing and traffic shaping. It also considers the network function pod placements based on affinity / anti-affinity rules, node capacities and taints/tolerations. Using this multi-agent framework, we provide network aware scheduling policies for differentiated network function virtualization services running on Kubernetes pods within data-center networks. The results are demonstrated over a real traffic dataset collected over Ericsson's testbed networks.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信