{"title":"椭圆边值问题等参数有限元离散化的最优$W^{1,\\infty}$ -估计","authors":"Benjamin Dörich, Jan Leibold, B. Maier","doi":"10.1553/etna_vol58s1","DOIUrl":null,"url":null,"abstract":". We consider an elliptic boundary value problem on a domain with regular boundary and discretize it with isoparametric finite elements of order k ≥ 1 . We show optimal order of convergence of the isoparametric finite element solution in the W 1 , ∞ -norm. As an intermediate step, we derive stability and convergence estimates of optimal order k for a (generalized) Ritz map.","PeriodicalId":282695,"journal":{"name":"ETNA - Electronic Transactions on Numerical Analysis","volume":"33 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Optimal $W^{1,\\\\infty}$-estimates for an isoparametric finite element discretization of elliptic boundary value problems\",\"authors\":\"Benjamin Dörich, Jan Leibold, B. Maier\",\"doi\":\"10.1553/etna_vol58s1\",\"DOIUrl\":null,\"url\":null,\"abstract\":\". We consider an elliptic boundary value problem on a domain with regular boundary and discretize it with isoparametric finite elements of order k ≥ 1 . We show optimal order of convergence of the isoparametric finite element solution in the W 1 , ∞ -norm. As an intermediate step, we derive stability and convergence estimates of optimal order k for a (generalized) Ritz map.\",\"PeriodicalId\":282695,\"journal\":{\"name\":\"ETNA - Electronic Transactions on Numerical Analysis\",\"volume\":\"33 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1900-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ETNA - Electronic Transactions on Numerical Analysis\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1553/etna_vol58s1\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ETNA - Electronic Transactions on Numerical Analysis","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1553/etna_vol58s1","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Optimal $W^{1,\infty}$-estimates for an isoparametric finite element discretization of elliptic boundary value problems
. We consider an elliptic boundary value problem on a domain with regular boundary and discretize it with isoparametric finite elements of order k ≥ 1 . We show optimal order of convergence of the isoparametric finite element solution in the W 1 , ∞ -norm. As an intermediate step, we derive stability and convergence estimates of optimal order k for a (generalized) Ritz map.