{"title":"评估针对恶意软件检测分类器的对抗性示例的可转移性","authors":"Yixiang Wang, Jiqiang Liu, Xiaolin Chang","doi":"10.1145/3310273.3323072","DOIUrl":null,"url":null,"abstract":"Machine learning (ML) algorithms provide better performance than traditional algorithms in various applications. However, some unknown flaws in ML classifiers make them sensitive to adversarial examples generated by adding small but fooled purposeful distortions to natural examples. This paper aims to investigate the transferability of adversarial examples generated on a sparse and structured dataset and the ability of adversarial training in resisting adversarial examples. The results demonstrate that adversarial examples generated by DNN can fool a set of ML classifiers such as decision tree, random forest, SVM, CNN and RNN. Also, adversarial training can improve the robustness of DNN in terms of resisting attacks.","PeriodicalId":431860,"journal":{"name":"Proceedings of the 16th ACM International Conference on Computing Frontiers","volume":"26 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-04-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Assessing transferability of adversarial examples against malware detection classifiers\",\"authors\":\"Yixiang Wang, Jiqiang Liu, Xiaolin Chang\",\"doi\":\"10.1145/3310273.3323072\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Machine learning (ML) algorithms provide better performance than traditional algorithms in various applications. However, some unknown flaws in ML classifiers make them sensitive to adversarial examples generated by adding small but fooled purposeful distortions to natural examples. This paper aims to investigate the transferability of adversarial examples generated on a sparse and structured dataset and the ability of adversarial training in resisting adversarial examples. The results demonstrate that adversarial examples generated by DNN can fool a set of ML classifiers such as decision tree, random forest, SVM, CNN and RNN. Also, adversarial training can improve the robustness of DNN in terms of resisting attacks.\",\"PeriodicalId\":431860,\"journal\":{\"name\":\"Proceedings of the 16th ACM International Conference on Computing Frontiers\",\"volume\":\"26 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-04-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 16th ACM International Conference on Computing Frontiers\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3310273.3323072\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 16th ACM International Conference on Computing Frontiers","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3310273.3323072","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Assessing transferability of adversarial examples against malware detection classifiers
Machine learning (ML) algorithms provide better performance than traditional algorithms in various applications. However, some unknown flaws in ML classifiers make them sensitive to adversarial examples generated by adding small but fooled purposeful distortions to natural examples. This paper aims to investigate the transferability of adversarial examples generated on a sparse and structured dataset and the ability of adversarial training in resisting adversarial examples. The results demonstrate that adversarial examples generated by DNN can fool a set of ML classifiers such as decision tree, random forest, SVM, CNN and RNN. Also, adversarial training can improve the robustness of DNN in terms of resisting attacks.