关于有界偏差时钟和斯坦纳路由问题

D. J. Huang, A. Kahng, C. Tsao
{"title":"关于有界偏差时钟和斯坦纳路由问题","authors":"D. J. Huang, A. Kahng, C. Tsao","doi":"10.1145/217474.217579","DOIUrl":null,"url":null,"abstract":"We study theminimum-cost bounded-skewrouting tree (BST) problem under the linear delay model. This problem captures several engineering tradeoffs in the design of routing topologies with controlled skew. We propose three tradeoff heuristics. (1) For a fixed topology Extended-DME (Ex-DME) extends the DME algorithm for exact zero-skew trees via the concept of a merging region. (2) For arbitrary topology and arbitrary embedding, Extended Greedy-DME (ExG-DME) very closely matches the best known heuristics for the zero-skewcase,and for the infinite-skewcase (i.e., the Steiner minimal tree problem). (3) For arbitrary topology and single-layer (planar) embedding, the Extended Planar-DME (ExP-DME) algorithm exactly matches the best known heuristic for zero-skewplanar routing, and closely approaches the best known performance for the infinite-skewcase. Ourwork provides unifications of the clock routing and Steiner tree heuristic literatures and gives smooth cost-skew tradeoff that enable good engineering solutions.","PeriodicalId":422297,"journal":{"name":"32nd Design Automation Conference","volume":"25 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"79","resultStr":"{\"title\":\"On the Bounded-Skew Clock and Steiner Routing Problems\",\"authors\":\"D. J. Huang, A. Kahng, C. Tsao\",\"doi\":\"10.1145/217474.217579\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We study theminimum-cost bounded-skewrouting tree (BST) problem under the linear delay model. This problem captures several engineering tradeoffs in the design of routing topologies with controlled skew. We propose three tradeoff heuristics. (1) For a fixed topology Extended-DME (Ex-DME) extends the DME algorithm for exact zero-skew trees via the concept of a merging region. (2) For arbitrary topology and arbitrary embedding, Extended Greedy-DME (ExG-DME) very closely matches the best known heuristics for the zero-skewcase,and for the infinite-skewcase (i.e., the Steiner minimal tree problem). (3) For arbitrary topology and single-layer (planar) embedding, the Extended Planar-DME (ExP-DME) algorithm exactly matches the best known heuristic for zero-skewplanar routing, and closely approaches the best known performance for the infinite-skewcase. Ourwork provides unifications of the clock routing and Steiner tree heuristic literatures and gives smooth cost-skew tradeoff that enable good engineering solutions.\",\"PeriodicalId\":422297,\"journal\":{\"name\":\"32nd Design Automation Conference\",\"volume\":\"25 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1900-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"79\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"32nd Design Automation Conference\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/217474.217579\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"32nd Design Automation Conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/217474.217579","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 79

摘要

研究了线性延迟模型下的最小代价有界扭曲树(BST)问题。这个问题抓住了在控制倾斜的路由拓扑设计中的几个工程权衡。我们提出了三种权衡启发式。(1)对于固定拓扑,扩展DME (Ex-DME)通过合并区域的概念对精确零偏树的DME算法进行了扩展。(2)对于任意拓扑和任意嵌入,扩展贪婪- dme (ExG-DME)非常接近于已知的零偏态和无限偏态(即Steiner最小树问题)的启发式算法。(3)对于任意拓扑和单层(平面)嵌入,扩展平面dme (ExP-DME)算法精确匹配已知的最优的零斜平面路由启发式算法,并接近已知的最优的无限斜情况下的性能。我们的工作提供了时钟路由和斯坦纳树启发式文献的统一,并给出了平滑的成本倾斜权衡,从而实现了良好的工程解决方案。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
On the Bounded-Skew Clock and Steiner Routing Problems
We study theminimum-cost bounded-skewrouting tree (BST) problem under the linear delay model. This problem captures several engineering tradeoffs in the design of routing topologies with controlled skew. We propose three tradeoff heuristics. (1) For a fixed topology Extended-DME (Ex-DME) extends the DME algorithm for exact zero-skew trees via the concept of a merging region. (2) For arbitrary topology and arbitrary embedding, Extended Greedy-DME (ExG-DME) very closely matches the best known heuristics for the zero-skewcase,and for the infinite-skewcase (i.e., the Steiner minimal tree problem). (3) For arbitrary topology and single-layer (planar) embedding, the Extended Planar-DME (ExP-DME) algorithm exactly matches the best known heuristic for zero-skewplanar routing, and closely approaches the best known performance for the infinite-skewcase. Ourwork provides unifications of the clock routing and Steiner tree heuristic literatures and gives smooth cost-skew tradeoff that enable good engineering solutions.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信