使用主成分分析发现体重的正态性:使用不同数据预处理方法的机器学习技术的比较研究

M. Sornam, M. Meharunnisa
{"title":"使用主成分分析发现体重的正态性:使用不同数据预处理方法的机器学习技术的比较研究","authors":"M. Sornam, M. Meharunnisa","doi":"10.1504/IJKEDM.2019.10018092","DOIUrl":null,"url":null,"abstract":"In data mining, feature selection plays an important role in finding the most important predictor variables (or features) that explain a major part of the variance of the response variable is a key to identify and build high performing models. In this proposed work, primary data is used to identify the normality/ abnormality of body weight. The missing data has been imputed by predictive mean matching (PMM) method. Efforts are made to reduce the dimensions of the data before classification using principal component analysis (PCA). The principal components obtained are passed as input to the supervised learning algorithm such as na","PeriodicalId":386151,"journal":{"name":"Int. J. Knowl. Eng. Data Min.","volume":"38 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-01-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"The discovery of normality of body weight using principal component analysis: a comparative study on machine learning techniques using different data pre-processing methods\",\"authors\":\"M. Sornam, M. Meharunnisa\",\"doi\":\"10.1504/IJKEDM.2019.10018092\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In data mining, feature selection plays an important role in finding the most important predictor variables (or features) that explain a major part of the variance of the response variable is a key to identify and build high performing models. In this proposed work, primary data is used to identify the normality/ abnormality of body weight. The missing data has been imputed by predictive mean matching (PMM) method. Efforts are made to reduce the dimensions of the data before classification using principal component analysis (PCA). The principal components obtained are passed as input to the supervised learning algorithm such as na\",\"PeriodicalId\":386151,\"journal\":{\"name\":\"Int. J. Knowl. Eng. Data Min.\",\"volume\":\"38 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-01-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Int. J. Knowl. Eng. Data Min.\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1504/IJKEDM.2019.10018092\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Int. J. Knowl. Eng. Data Min.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1504/IJKEDM.2019.10018092","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

在数据挖掘中,特征选择在寻找解释响应变量方差的主要部分的最重要的预测变量(或特征)方面起着重要作用,是识别和构建高性能模型的关键。在这项拟议的工作中,主要使用原始数据来识别体重的正常/异常。利用预测均值匹配(PMM)方法对缺失数据进行了输入。在使用主成分分析(PCA)进行分类之前,努力降低数据的维度。得到的主成分作为输入传递给监督学习算法,如na
本文章由计算机程序翻译,如有差异,请以英文原文为准。
The discovery of normality of body weight using principal component analysis: a comparative study on machine learning techniques using different data pre-processing methods
In data mining, feature selection plays an important role in finding the most important predictor variables (or features) that explain a major part of the variance of the response variable is a key to identify and build high performing models. In this proposed work, primary data is used to identify the normality/ abnormality of body weight. The missing data has been imputed by predictive mean matching (PMM) method. Efforts are made to reduce the dimensions of the data before classification using principal component analysis (PCA). The principal components obtained are passed as input to the supervised learning algorithm such as na
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信