{"title":"基于帧的线性判别分析人脸情感识别","authors":"Hatef Otroshi-Shahreza","doi":"10.1109/ICSPIS.2017.8311605","DOIUrl":null,"url":null,"abstract":"In this paper, a frame-based method with reference frame was proposed to recognize six basic facial emotions (anger, disgust, fear, happy, sadness and surprise) and also neutral face. By using face landmarks, a fast algorithm was used to calculate an appropriate descriptor for each frame. Furthermore, Linear Discriminant Analysis (LDA) was used to reduce the dimension of defined descriptors and to classify them. The LDA problem was solved using the least squares solution and Ledoit-Wolf lemma. The proposed method was also compared with some studies on CK+ dataset which has the best accuracy among them. To generalize the proposed method over CK+ dataset, a landmark detector was needed. Therefore, dlib library was used for this purpose. Note that all the codes are available online at: http://ee.sharif.edu/∼hatef.otroshi/Emotion_ Recognition_LDA_2017.html.","PeriodicalId":380266,"journal":{"name":"2017 3rd Iranian Conference on Intelligent Systems and Signal Processing (ICSPIS)","volume":"79 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Frame-based face emotion recognition using linear discriminant analysis\",\"authors\":\"Hatef Otroshi-Shahreza\",\"doi\":\"10.1109/ICSPIS.2017.8311605\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, a frame-based method with reference frame was proposed to recognize six basic facial emotions (anger, disgust, fear, happy, sadness and surprise) and also neutral face. By using face landmarks, a fast algorithm was used to calculate an appropriate descriptor for each frame. Furthermore, Linear Discriminant Analysis (LDA) was used to reduce the dimension of defined descriptors and to classify them. The LDA problem was solved using the least squares solution and Ledoit-Wolf lemma. The proposed method was also compared with some studies on CK+ dataset which has the best accuracy among them. To generalize the proposed method over CK+ dataset, a landmark detector was needed. Therefore, dlib library was used for this purpose. Note that all the codes are available online at: http://ee.sharif.edu/∼hatef.otroshi/Emotion_ Recognition_LDA_2017.html.\",\"PeriodicalId\":380266,\"journal\":{\"name\":\"2017 3rd Iranian Conference on Intelligent Systems and Signal Processing (ICSPIS)\",\"volume\":\"79 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2017 3rd Iranian Conference on Intelligent Systems and Signal Processing (ICSPIS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICSPIS.2017.8311605\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 3rd Iranian Conference on Intelligent Systems and Signal Processing (ICSPIS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICSPIS.2017.8311605","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Frame-based face emotion recognition using linear discriminant analysis
In this paper, a frame-based method with reference frame was proposed to recognize six basic facial emotions (anger, disgust, fear, happy, sadness and surprise) and also neutral face. By using face landmarks, a fast algorithm was used to calculate an appropriate descriptor for each frame. Furthermore, Linear Discriminant Analysis (LDA) was used to reduce the dimension of defined descriptors and to classify them. The LDA problem was solved using the least squares solution and Ledoit-Wolf lemma. The proposed method was also compared with some studies on CK+ dataset which has the best accuracy among them. To generalize the proposed method over CK+ dataset, a landmark detector was needed. Therefore, dlib library was used for this purpose. Note that all the codes are available online at: http://ee.sharif.edu/∼hatef.otroshi/Emotion_ Recognition_LDA_2017.html.