Aruna Jammalamadaka, Lingyi Zhang, Joseph Comer, Sasha Strelnikoff, R. Mustari, Tsai-Ching Lu, Rajan Bhattacharyya
{"title":"视觉因果宏变量的半监督学习","authors":"Aruna Jammalamadaka, Lingyi Zhang, Joseph Comer, Sasha Strelnikoff, R. Mustari, Tsai-Ching Lu, Rajan Bhattacharyya","doi":"10.32473/flairs.36.133229","DOIUrl":null,"url":null,"abstract":"\n \n \nDiscovery of causally related concepts is one of the key challenges in extracting knowledge from observational data. Lower-dimensional “causal macrovariables” represent concepts which preserve all relevant causal information in high-dimensional systems. Existing causal macrovariable discovery algorithms are limited by assumptions about known and controllable interventions. We propose a variational autoencoder-inspired architecture with regularization terms for semi-supervised causal macrovariable discovery. These terms impose domain knowledge regarding visual causal concepts to differentiate between correlation and causation. Experiments on both synthetic and real-world datasets with known causal dynamics show that our method can discover more concise and precise causal macrovariables than unsupervised methods. \n \n \n","PeriodicalId":302103,"journal":{"name":"The International FLAIRS Conference Proceedings","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-05-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Semi-supervised Learning of Visual Causal Macrovariables\",\"authors\":\"Aruna Jammalamadaka, Lingyi Zhang, Joseph Comer, Sasha Strelnikoff, R. Mustari, Tsai-Ching Lu, Rajan Bhattacharyya\",\"doi\":\"10.32473/flairs.36.133229\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\n \\n \\nDiscovery of causally related concepts is one of the key challenges in extracting knowledge from observational data. Lower-dimensional “causal macrovariables” represent concepts which preserve all relevant causal information in high-dimensional systems. Existing causal macrovariable discovery algorithms are limited by assumptions about known and controllable interventions. We propose a variational autoencoder-inspired architecture with regularization terms for semi-supervised causal macrovariable discovery. These terms impose domain knowledge regarding visual causal concepts to differentiate between correlation and causation. Experiments on both synthetic and real-world datasets with known causal dynamics show that our method can discover more concise and precise causal macrovariables than unsupervised methods. \\n \\n \\n\",\"PeriodicalId\":302103,\"journal\":{\"name\":\"The International FLAIRS Conference Proceedings\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-05-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"The International FLAIRS Conference Proceedings\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.32473/flairs.36.133229\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"The International FLAIRS Conference Proceedings","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.32473/flairs.36.133229","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Semi-supervised Learning of Visual Causal Macrovariables
Discovery of causally related concepts is one of the key challenges in extracting knowledge from observational data. Lower-dimensional “causal macrovariables” represent concepts which preserve all relevant causal information in high-dimensional systems. Existing causal macrovariable discovery algorithms are limited by assumptions about known and controllable interventions. We propose a variational autoencoder-inspired architecture with regularization terms for semi-supervised causal macrovariable discovery. These terms impose domain knowledge regarding visual causal concepts to differentiate between correlation and causation. Experiments on both synthetic and real-world datasets with known causal dynamics show that our method can discover more concise and precise causal macrovariables than unsupervised methods.