基于动态污点分析的有效模糊

Guangcheng Liang, L. Liao, Xin Xu, Jianguang Du, Guoqiang Li, Henglong Zhao
{"title":"基于动态污点分析的有效模糊","authors":"Guangcheng Liang, L. Liao, Xin Xu, Jianguang Du, Guoqiang Li, Henglong Zhao","doi":"10.1109/CIS.2013.135","DOIUrl":null,"url":null,"abstract":"In this paper we present a new vulnerability-targeted black box fuzzing approach to effectively detect errors in the program. Unlike the standard fuzzing techniques that randomly change bytes of the input file, our approach remarkably reduces the fuzzing range by utilizing an efficient dynamic taint analysis technique. It locates the regions of seed files that affect the values used at the hazardous points. Thus it enables to pay more attention to deep errors in the core of the program. Because our approach is directly targeted to the specific potential vulnerabilities, most of the detected errors are with vulnerability signatures. Besides, this approach does not need the information of the input file format in advance. So it is especially appropriate for testing applications with complex and highly structured input file formats. We design and implement a prototype, Taint Fuzz, to realize this approach. The experiments demonstrate that Taint Fuzz can effectively expose more errors with much lower time cost and much smaller number of input samples compared with the standard fuzzer.","PeriodicalId":294223,"journal":{"name":"2013 Ninth International Conference on Computational Intelligence and Security","volume":"24 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-12-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"12","resultStr":"{\"title\":\"Effective Fuzzing Based on Dynamic Taint Analysis\",\"authors\":\"Guangcheng Liang, L. Liao, Xin Xu, Jianguang Du, Guoqiang Li, Henglong Zhao\",\"doi\":\"10.1109/CIS.2013.135\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper we present a new vulnerability-targeted black box fuzzing approach to effectively detect errors in the program. Unlike the standard fuzzing techniques that randomly change bytes of the input file, our approach remarkably reduces the fuzzing range by utilizing an efficient dynamic taint analysis technique. It locates the regions of seed files that affect the values used at the hazardous points. Thus it enables to pay more attention to deep errors in the core of the program. Because our approach is directly targeted to the specific potential vulnerabilities, most of the detected errors are with vulnerability signatures. Besides, this approach does not need the information of the input file format in advance. So it is especially appropriate for testing applications with complex and highly structured input file formats. We design and implement a prototype, Taint Fuzz, to realize this approach. The experiments demonstrate that Taint Fuzz can effectively expose more errors with much lower time cost and much smaller number of input samples compared with the standard fuzzer.\",\"PeriodicalId\":294223,\"journal\":{\"name\":\"2013 Ninth International Conference on Computational Intelligence and Security\",\"volume\":\"24 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2013-12-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"12\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2013 Ninth International Conference on Computational Intelligence and Security\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CIS.2013.135\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 Ninth International Conference on Computational Intelligence and Security","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CIS.2013.135","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 12

摘要

在本文中,我们提出了一种新的针对漏洞的黑盒模糊方法来有效地检测程序中的错误。与随机改变输入文件字节的标准模糊技术不同,我们的方法通过利用有效的动态污染分析技术显着减少了模糊范围。它定位影响在危险点使用的值的种子文件区域。因此,它能够更多地关注程序核心中的深层错误。由于我们的方法直接针对特定的潜在漏洞,因此大多数检测到的错误都带有漏洞签名。此外,该方法不需要预先了解输入文件的格式信息。因此,它特别适合测试具有复杂和高度结构化输入文件格式的应用程序。我们设计并实现了一个原型,Taint Fuzz,来实现这种方法。实验表明,与标准模糊器相比,该模糊器能以更低的时间成本和更少的输入样本数有效地暴露更多的误差。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Effective Fuzzing Based on Dynamic Taint Analysis
In this paper we present a new vulnerability-targeted black box fuzzing approach to effectively detect errors in the program. Unlike the standard fuzzing techniques that randomly change bytes of the input file, our approach remarkably reduces the fuzzing range by utilizing an efficient dynamic taint analysis technique. It locates the regions of seed files that affect the values used at the hazardous points. Thus it enables to pay more attention to deep errors in the core of the program. Because our approach is directly targeted to the specific potential vulnerabilities, most of the detected errors are with vulnerability signatures. Besides, this approach does not need the information of the input file format in advance. So it is especially appropriate for testing applications with complex and highly structured input file formats. We design and implement a prototype, Taint Fuzz, to realize this approach. The experiments demonstrate that Taint Fuzz can effectively expose more errors with much lower time cost and much smaller number of input samples compared with the standard fuzzer.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信