L. Storasta, S. Matthias, A. Kopta, Munaf T. A. Rahimo
{"title":"双极晶体管增益对高压bigt高温热稳定性的影响","authors":"L. Storasta, S. Matthias, A. Kopta, Munaf T. A. Rahimo","doi":"10.1109/ISPSD.2012.6229047","DOIUrl":null,"url":null,"abstract":"In this paper we present the detailed investigation of the influence of the internal bipolar PNP transistor gain on the thermal stability of high voltage IGBTs and BiGTs. The bipolar gain is controlled by means of anode and buffer design and by the introduction of anode shorts. The influence of the different buffer and anode doping profiles and the different layouts in the case of anode-shorted designs are analyzed. Temperature dependent leakage current measurements confirm that the lowering of the leakage current and its subsequent weak temperature dependency can be achieved by buffer and anode engineering albeit with certain design trade-off restrictions. Nevertheless, another effective approach for suppressing the leakage current and its dependency on temperature is achieved by the introduction of anode shorts as demonstrated in reverse conducting IGBT or BiGT structures. Such designs eliminate to a large extent the internal bipolar transistor action in the BiGT anode shorted designs while allowing different anode and buffer doping profiles for the design trade-offs. Despite the fact that the lifetime control in the BiGT drift region causes the leakage current to increase, the temperature coefficient remains unchanged, hence, making the hard switched BiGT suitable for high temperature operation.","PeriodicalId":371298,"journal":{"name":"2012 24th International Symposium on Power Semiconductor Devices and ICs","volume":"20 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2012-06-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"13","resultStr":"{\"title\":\"Bipolar transistor gain influence on the high temperature thermal stability of HV-BiGTs\",\"authors\":\"L. Storasta, S. Matthias, A. Kopta, Munaf T. A. Rahimo\",\"doi\":\"10.1109/ISPSD.2012.6229047\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper we present the detailed investigation of the influence of the internal bipolar PNP transistor gain on the thermal stability of high voltage IGBTs and BiGTs. The bipolar gain is controlled by means of anode and buffer design and by the introduction of anode shorts. The influence of the different buffer and anode doping profiles and the different layouts in the case of anode-shorted designs are analyzed. Temperature dependent leakage current measurements confirm that the lowering of the leakage current and its subsequent weak temperature dependency can be achieved by buffer and anode engineering albeit with certain design trade-off restrictions. Nevertheless, another effective approach for suppressing the leakage current and its dependency on temperature is achieved by the introduction of anode shorts as demonstrated in reverse conducting IGBT or BiGT structures. Such designs eliminate to a large extent the internal bipolar transistor action in the BiGT anode shorted designs while allowing different anode and buffer doping profiles for the design trade-offs. Despite the fact that the lifetime control in the BiGT drift region causes the leakage current to increase, the temperature coefficient remains unchanged, hence, making the hard switched BiGT suitable for high temperature operation.\",\"PeriodicalId\":371298,\"journal\":{\"name\":\"2012 24th International Symposium on Power Semiconductor Devices and ICs\",\"volume\":\"20 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2012-06-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"13\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2012 24th International Symposium on Power Semiconductor Devices and ICs\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ISPSD.2012.6229047\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2012 24th International Symposium on Power Semiconductor Devices and ICs","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISPSD.2012.6229047","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Bipolar transistor gain influence on the high temperature thermal stability of HV-BiGTs
In this paper we present the detailed investigation of the influence of the internal bipolar PNP transistor gain on the thermal stability of high voltage IGBTs and BiGTs. The bipolar gain is controlled by means of anode and buffer design and by the introduction of anode shorts. The influence of the different buffer and anode doping profiles and the different layouts in the case of anode-shorted designs are analyzed. Temperature dependent leakage current measurements confirm that the lowering of the leakage current and its subsequent weak temperature dependency can be achieved by buffer and anode engineering albeit with certain design trade-off restrictions. Nevertheless, another effective approach for suppressing the leakage current and its dependency on temperature is achieved by the introduction of anode shorts as demonstrated in reverse conducting IGBT or BiGT structures. Such designs eliminate to a large extent the internal bipolar transistor action in the BiGT anode shorted designs while allowing different anode and buffer doping profiles for the design trade-offs. Despite the fact that the lifetime control in the BiGT drift region causes the leakage current to increase, the temperature coefficient remains unchanged, hence, making the hard switched BiGT suitable for high temperature operation.